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Is there a northern Lesser Antilles forearc block?
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[1] A systematic discrepancy exists between slip vectors
of thrust fault earthquakes at the Lesser Antilles trench
(LAT) and the predicted direction of North American-
Caribbean convergence. A possibility has been that the
discrepancy resulted because neither was well constrained.
Estimating Caribbean motion has been challenging owing to
the limited data along the plate’s complex boundaries.
Similarly, earlier studies had few slip vectors because
interplate thrust events are infrequent. To address these
difficulties, we estimate a new Caribbean-North America
Euler vector using recently available GPS data from sites in
the presumably stable interior of the Caribbean, and
compare the predicted velocities to a larger set of slip
vectors. The discrepancy persists, suggesting the northern
Lesser Antilles forearc (NLAF) moves as a distinct entity
from both the Caribbean and North America. For simplicity,
we treat its motion as a coherent block, but because GPS
sites are not within the NLAF, distributed deformation is
also possible. Although there is no geologic evidence for the
boundaries of the presumed NLAF block, GPS data show
that the motions of Martinique, Barbados, and Trinidad are
similar to that of the Caribbean, suggesting that none are on
the NLAF block, and the southern LAT is weakly coupled.
Citation: Lopez, A. M., S. Stein, T. Dixon, G. Sella, E. Calais,
P. Jansma, J. Weber, and P. LaFemina (2006), Is there a northern
Lesser Antilles forearc block?, Geophys. Res. Lett., 33, L07313,
doi:10.1029/2005GL025293.

1. Introduction

[2] Determining how the Caribbean (CA) plate moves
with respect to the neighboring North America (NA) and
South America (SA) plates has been a major challenge.
Geologic plate motion models using seafloor magnetic
anomaly rates, transform fault azimuths and slip vectors
faced difficulties due to sparse data. The only rates come
from the Cayman Spreading Center (CSC), and seismicity at
the eastern boundary is low due to slow convergence.
Moreover, the boundary geometry is still unclear, since
the CA’s north and south boundaries are complex deforma-
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tion zones and it is uncertain where the CA-NA-SA triple
junction lies.

[3] As aresult, CA plate motion is poorly constrained in
models like NUVEL-1 [DeMets et al., 1994]. This lack of
knowledge manifested itself in the Lesser Antilles (LA).
Stein et al. [1988] noted that the discrepancy between the
~2 cm/yr of CA-NA motion found by Jordan [1975] based
on the CSC spreading rate, and the ~4 cm/yr found by
Sykes et al. [1982] using slip vectors at the LA trench (LAT)
and the length of the Wadati-Benioff zone, resulted from the
data used. Models based on LAT slip vectors misfit CSC
rates and vice versa. This discrepancy might reflect either or
both of two biases. First, the Cayman rate might not reflect
full NA-CA motion due to deformation within the Northern
CA plate boundary zone (NCPBZ). Second, the LAT slip
vectors might not reflect NA-CA motion if the LA forearc
moves separately from both NA and CA.

[4] GPS geodesy yielded new insights into NA-CA
motion at the NCPBZ [Dixon et al., 1998; Mann et al.,
2002; Calais et al., 2003] and is helping to address slip
partitioning at the LAT. Here we revisit LA motions using a
new NA-CA Euler vector derived from an improved GPS
data set, which has additional sites with longer time series.
We compare these data to a larger slip vector data set to
suggest a possible forearc sliver along the northern portion
of the LA.

2. Caribbean Plate Motion

[s] We estimated CA plate motion using GPS sites
(Figure 1 and Table 1) AVES (Aves Island), BARB (Barba-
dos), CORN and PUEC (Nicaragua), CRO1 (St.Croix),
FSDO and FSD1 (Martinique), SANA (San Andrés Island),
and TDAD (Trinidad).

[6] We processed the data in the IGSbOO (a pure GPS
version of the ITRF2000) reference frame [Ray et al., 2004]
using GIPSY software [Zumberge et al., 1997] at the
University of Miami and precise satellite orbits and clocks
from JPL. Processing procedures followed Sella et al.
[2002], and velocity uncertainties were estimated using
the noise model from Mao et al. [1999]. Most sites have
been episodically occupied. CRO1 and BARB are contin-
uous, but BARB has been offline since 2001.

[7] Following DeMets et al. [2000], Weber et al. [2001],
and Sella et al. [2002], we derived three Euler vectors with
a combination of the sites in Table 1. We also formed
hybrid Euler vectors by combining the GPS-derived ve-
locities with two Swan Island transform faults (SITF)
azimuths (stars in Figure 1) [Rosencrantz and Mann,
1991]. Caribbean Euler vectors and associated uncertainties
in IGSb00 (Table 2) were derived by inverting the GPS
data sets and a hybrid data set of GPS data plus the two
SITF azimuths.
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Figure 1. Regional tectonic map. Black circles and vectors
with 2o error ellipse are velocities of sites in a NA reference
frame. Open circles with gray vectors (offset for clarity) are
velocities predicted by our 9-site GPS-only CA-NA Euler
vector. ROJO, previously considered as a stable CA site,
was not used in the inversions. AP-Anegada Passage, CSC-
Cayman Spreading Center, EPGFZ-Enriquillo-Plantain
Garden Fault Zone, LAT-Lesser Antilles Trench, MT-
Muertos Trough, NHF-Northern Hispaniola Fault, OF-
Oriente Fault, PRT-Puerto Rico Trench, SITF-Swan Island
Transform Fault.

[8] To test how the Euler vector depended on the sites
whose velocities we inverted to estimate it, we compared
several solutions. We first defined the stable CA plate
using the three sites (first three in Table 1) least likely to be
significantly affected by plate boundary zone processes.
However, after processing the three additional sites with
sufficiently long time series and finding agreement be-
tween their velocities and those of the three original sites,
we also treated them as part of the stable plate, i.c.,
unaffected by plate boundary deformation. The last three
sites of Table 1 were added subsequently to analyze how
the pole would change to the 6-site solution. Inclusion of
relatively new sites in eastern Nicaragua, CORN (Corn
Island) and PUEC (Puerto Cabezas), yielded results in
agreement with SANA. We also included TDAD into the
solution, despite its location near the boundary with the SA
plate.

[o] Because the CA plate is primarily oceanic, most GPS
sites are along its complex boundaries, making it difficult to
assess whether a site velocity misfits a model derived for the
entire plate because the site is in a boundary zone or
because the model is biased by deformation in the plate’s
interior [Driscol and Diebold, 1998]. At least for TDAD
and the LA, elastic strain accumulation effects due to the

Table 1. GPS Velocities in IGSb00*

Lat., Long., AT, Vs V.,

Site ID °N °E years N mm/yr mm/yr

AVES 15.67 —63.62 3.87 2 13.0 £ 1.0 12.8 £2.00
SANA 12.53 —81.73 9.16 5 06.7 £ 0.6 12.2 £0.90
CRO1 17.76 —64.58 10.42 b 12.4+0.3 10.3 £ 0.40
BARB 13.09 —-59.61 3.24 b 143 +1.0 12.7 £ 1.70
FSDO 14.73 —61.15 5.47 2 132+ 1.5 13.0 £2.10
FSD1 14.73 —61.15 5.46 2 141 +£1.5 13.3 £ 1.40
CORN 12.17 —83.06 2.11 2 6.3 +25 11.0 + 3.80
PUEC 14.04 —83.38 2.10 2 48 £3.1 10.8 +£3.40
TDAD 10.68 —61.40 10.63 3 11.9+1.2 12.9 + 1.60

ZAT Span of observations used. N number of occupations.
°Continuous GPS site.
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seismic cycle are probably not significant. Comparisons of
GPS site velocities with those predicted by previous plate
models find that boundary segments near TDAD and at the
LA are only weakly coupled [Weber et al., 2001; Przybylski
et al., 2005, manuscript in preparation, 2006].

[10] Results from inverting the hybrid data were essen-
tially the same as from the GPS data alone and since all 3
pure GPS solutions yielded good approximations to the
SITF azimuths, we opted to use these only. To obtain
velocities in a NA reference frame, we used an improved
version of the REVEL [Sella et al., 2002] NA Euler vector,
in which the selected 89 sites in IGSb0O0 are presumably free
of glacial-isostatic adjustment (G. F. Sella, personal com-
munication, 2005). The Euler vectors overlap at the 2o level
from those of Sella et al. [2002] and Kreemer et al. [2003]
and differs significantly from the hybrid solution of DeMets
et al. [2000]. (The latter’s Table 1 contains a typographical
error; the ¢ of the CA-IT Euler vector should be 265.9°
instead of 275.9°). Similarly, we obtained a CA-SA Euler
vector by substracting an 11 site SA Euler vector in IGSb00
(G. F. Sella, personal communication, 2005), which yielded
results consistent with previous studies [Weber et al., 2001;
Sella et al., 2002; Kreemer et al., 2003].

[11] DeMets et al. [2000] suggested an upper-bound to
the internal deformation of the CA plate of 4—6 mm/yr from
the average misfit of 2 mm/yr of their hybrid model to the
GPS velocities, in particular at western sites ROJO (Cabo
Rojo, Dominican Republic) and SANA. We did not use
ROJO in our analysis because doing so yields a noticeable
misfit, perhaps reflecting boundary deformation along faults
in the Sierra de Bahoruco ~50 km north of ROJO. In
contrast, the additional data does not indicate any misfit at
SANA.

[12] Our improved data set yields mean rate residuals
lower than found by Weber et al. [2001] and agrees with
their suggestion of a single-plate model for the Caribbean.
The 6-site solution yields a mean rate residual of 0.81 mm/
yr with reduced chi square (x2) value of 0.30. Adding the
Nicaraguan sites and subsequently TDAD to the inversion,
yields 0.90 mm/yr (x2 = 0.22), and 0.99 mm/yr (x> = 0.31)
for the 8-site and 9-site solutions, respectively.

Table 2. Euler Vectors for Plate Pairs®

Lat., Lon., o1, 0,, m,

Plate Pair Model °N °E W deg. deg. deg. o,
CA- 6-site  37.4 —-989 0250 20 05 -57 0.009
IGSb00  8-site  37.3 —98.8 0.251 1.7 04 —61 0.007

9-site  37.6 —99.3  0.247 1.9 05 —62 0.008
CA- 6-site 755 —172.8 0.177 49 0.7 71 0.004
NA 8-site  75.1 —1722 0.177 4.1 0.6 72 0.003
9-site 752 —1774 0.176 47 0.7 67 0.003
RVL 755 —154.6 0.180 109 1.3 88 0.008
D2k 649 —109.5 0214 146 1.5 =35 0.030
CA- 6-site 57.1 —69.5 0.236 39 1.2 —17 0.009
SA 8-site  57.0 —69.5 0.237 3.7 1.1 =19 0.008
9-site  57.6 —69.3 0.233 39 1.2 —=17 0.009
W0l 51.5 —65.7 0.272 6.1 1.9 -8 0.023
RVL 52.8 —66.3 0.267 54 14 -5 0.021

#9-site uses all sites in Table 1. 8-site excludes TDAD. 6-site excludes
TDAD, CORN and PUEC. o, and o, are lengths of 2D, 1o semi-major and
semi-minor axes of Euler pole error ellipse. w and o, are in °/Myr. 1 is
azimuth of semi-major axis o; in degrees clockwise from north. RVL from
Sella et al. [2002]. D2k from DeMets et al. [2000]. WO1 is the 8-site Euler
vector from Weber et al. [2001].
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Figure 2. Slip partitioning and the possible NLAF block. Maps shows deviation of slip vectors (white arrows) from
predictions (black arrows) of our 9-site CA-NA Euler vector. Black (0—20 km) and gray (20—40 km) strike-slip focal
mechanisms are from the Harvard CMT catalog. (a) Azimuths of shallow thrust slip vectors (triangles) and predictions of
various Euler vectors. TP = trench normal azimuth. D2000 from DeMets et al. [2000]. (b) and (c)Average SV azimuths
(white vector) from two regions show misfit to predicted azimuth (black vector) at those locations, suggesting the presence

of a block moving WNW with respect to CA.

[13] The velocities of TDAD, FSDO, FSD1, and BARB
are similar in rates and azimuths to the models predictions.
Hence, although the site geometry precludes testing them
against a model derived only from sites within the plate
interior, it appears that at least the southern half of the LA
arc moves consistently with the CA plate.

3. Lesser Antilles Forearc Motion

[14] Comparison of the new GPS-derived plate motion
directions to an updated slip vector data set at the LA trench
shows that the discrepancy persists. We used all available
shallow thrust events from the Harvard CMT catalog with T-
axes plunge greater than 45° and depths shallower than 40
km. We assign the slip vectors a nominal uncertainty of 15°.
We added the two slip vectors from Sykes et al. [1982] that
are relevant to the area. Figure 2a shows how the slip vector
azimuths differ from the predictions of the selected CA-NA
Euler vectors.

[15] The slip vectors trend between the trench-normal and
predicted convergence directions, an effect observed at
other trenches where plate motion is oblique to the trench.
This phenomena is attributed to slip partitioning, in which a
forearc sliver moves separately from the overriding and
subducting plates [DeMets and Stein, 1990; McCaffrey,
1992, 2002]. In such cases, because the slip vectors do
not represent motion between the major plates, including
them can bias a plate motion model [DeMets et al., 1994].
In the limiting case of pure slip partitioning, pure thrust
faulting occurs at the trench, and all oblique motion is
accommodated by trench-parallel strike-slip.

[16] If this discrepancy were due to a northern LA
forearc (NLAF), its motion can be constrained by a
velocity space diagram in which the slip vectors give the
direction of NLAF-NA motion. Because the slip vectors do

not give a rate, solving the vector triangle requires assum-
ing a direction of CA-NLAF motion. In many arcs this
direction is given by geologic knowledge of the boundary
between the sliver and overriding plate. Here, given the
absence of direct evidence for such a boundary, we assume
that it is parallel to the trench (the boundary between the
hypothetical sliver and subducting plate). If so, rough
estimates put the sliver moving WNW relative to CA at
~9 mm/yr in the north (Figure 2b) and ~4 mm/yr to the
south (Figure 2c¢) resulting in a decreased component of
obliquity southward.

[17] The major difficulty proposing the NLAF as a
distinct entity, and if so, whether it is a block or if it
deforms internally, is the absence of geologic evidence for
boundaries of the presumed NLAF block and of geodetic
data within the block directly showing its motion. The fact
that GPS data from FSDO0/1, BARB and TDAD are consis-
tent with the overall motion of CA suggest the possible
NLAF’s west boundary lies east of Martinique and does not
extend south of 14°N. However, these data are indirect, in
that they show only what is not part of the presumed block.
Given that we do not have GPS data within the NLAF, even
if it moves distinctly from both CA and NA, it need not
move as a rigid block, as we have assumed for simplicity.
Our data would also be consistent with the NLAF deform-
ing internally as proposed by Feuillet et al. [2002] based on
the observations of normal faults in the vicinity of Guade-
loupe that strike SW and NE, representing arc-parallel
extension with LA’s northern portion moving in a similar
manner to what we propose here. Only two strike-slip
mechanisms northwest of the island (Figure 2) are available
to relate them to the mapped NW-striking faults in that
location and may represent the NLAF’s western boundary.
Similarly, another event east of Martinique has the same
mechanism, suggesting the sliver’s western boundary. How-
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ever, these events may equally reflect right-lateral bookshelf
faulting.

[18] Curiously, the hypothetical NLAF block roughly
coincides with the northern portion of the arc, which has
many more earthquakes than the less seismically active
southern half. No compelling explanation has been offered
for this difference. Suggestions include a change across the
NA-SA boundary (though it is unclear why the expected
small difference in motion should matter) [Vierbuchen,
1979], thicker sediments from the Orinoco river [Wright,
1981] lubricating the plate interface, and a seismic gap.
Whether this is a gap where future large events are expected
is unclear. The fact that motions of BARB and FSDO0/1 are
consistent with those of the CA plate indicate that they are
not perturbed by the effects of elastic strain accumulation
due to the seismic cycle. This would be consistent with the
earthquake history implying that much of the plate conver-
gence occurs aseismically [Stein et al., 1986], though some
large thrust events may still occur [Bernard and Lambert,
1988].

[19] In summary, the long-recognized discrepancy be-
tween the slip vectors of thrust fault earthquakes at the
LAT and the predicted direction of NA-CA convergence
persists with better estimates of the plate motion and a larger
slip vector data set. The discrepancy suggests that a NLAF
block moves distinctly from both major plates. Confirming
this hypothesis would require GPS data from within the
block and geologic data for its boundaries.

[20] Acknowledgment. We thank J. DeChabalier, J. Ruegg and the
IPGP for Martinique GPS data, and R. Biirgmann and an anonymous
reviewer for useful comments.
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