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Abstract Numerical modeling has emerged over the last sev-
eral decades as a widely accepted tool for investigations in
environmental sciences. In estuarine research, hydrodynamic
and ecological models have moved along parallel tracks with
regard to complexity, refinement, computational power, and
incorporation of uncertainty. Coupled hydrodynamic-
ecological models have been used to assess ecosystem pro-
cesses and interactions, simulate future scenarios, and evalu-
ate remedial actions in response to eutrophication, habitat loss,
and freshwater diversion. The need to couple hydrodynamic
and ecological models to address research and management
questions is clear because dynamic feedbacks between biotic
and physical processes are critical interactions within ecosys-
tems. In this review, we present historical and modern per-
spectives on estuarine hydrodynamic and ecological model-
ing, consider model limitations, and address aspects of model
linkage, skill assessment, and complexity. We discuss the bal-
ance between spatial and temporal resolution and present ex-
amples using different spatiotemporal scales. Finally, we rec-
ommend future lines of inquiry, approaches to balance

complexity and uncertainty, and model transparency and util-
ity. It is idealistic to think we can pursue a Btheory of
everything^ for estuarine models, but recent advances suggest
that models for both scientific investigations and management
applications will continue to improve in terms of realism, pre-
cision, and accuracy.
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Models as Essential Tools in Estuarine Science

Introduction to Models

Models are defined in numerous ways: Ba usually small copy
of something,^ Ba particular type or version of a product,^ and
most relevant to environmental models, Ba set of ideas and
numbers that describe the past, present, or future state of
something^ (Merriam-Webster 2014). While the latter most
embodies simulation models, the other definitions allude to
the role of models as versions of real (or hypothetical) sys-
tems. Models can involve ideas or numbers that describe a
system, thus encompassing both conceptual and mathematical
constructs. Reckhow and Chapra (1983b) define a model as Ba
simplified representation of a real object, process, concept, or
system^ while Haefner (2005) defines them generally as Ba
description of a system.^Many authors have coined their own
definitions, but all highlight models as idealized representa-
tions of natural systems.

Brush and Harris (in press) definemodels as Bconceptual or
mathematical simplifications of real systems.^ This includes
conceptual models, in which relationships between system
components are diagrammed to synthesize understanding of
system function and enable qualitative predictions of future
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states (e.g., Valiela et al. 1997a; Jay et al. 2000; Thomas et al.
2006). Mathematical models may explore qualitative system
behaviors and have been critical in synthesizing data and de-
cision making in ecologically sensitive regions (Di Gennaro
et al. 2012). Peters (1991) emphasized development of falsi-
fiable, quantitative predictions in ecology, where models are
used as tools to test logic based upon a defined set of assump-
tions. Models have moved beyond the conceptual phase and
involve predictive equations to describe real phenomena; the-
se models can take the form of empirical or statistical relation-
ships driven by observed data (e.g., Dillon and Rigler 1974;
Vollenweider 1976; Nixon et al. 1996, 2001) or mechanistic,
process-based models that piece together equations
representing underlying physical, chemical, and biological
processes (e.g., Kremer and Nixon 1978; Cerco and Cole
1994; Cerco and Noel 2004; Luff and Moll 2004; Soetaert
and Middelburg 2009). Some mechanistic models have exact,
analytical solutions (e.g., Streeter and Phelps 1925; Hansen
and Rattray 1965), but most must be discretized in space and
time and solved by numerical simulation. It is the latter type of
model that is the focus of this review.

In both estuarine hydrodynamics and ecology, the use of
simulationmodels has increased during the past several decades
(Brush and Harris 2010, 2015). Numerical models of estuarine
hydrodynamics have expanded from tidally averaged one-
dimensional models (Hansen and Rattray 1965) to fully three-
dimensional (3D) models that can resolve wetting and drying,
wave-current interaction, and sediment transport (e.g., Warner
et al. 2005; Zhao et al. 2010; Olabarrieta et al. 2011). Numerical
models emerged as heuristic tools for understanding ecosystem
structure and function in the 1970s (e.g., Patten 1971; Di Toro
et al. 1971; Odum 1971; Kremer and Nixon 1978) and their
utility as management tools grew in the 1980s (e.g., HydroQual
1987). The development of increasingly powerful computers,
user-friendly software, and the acceptance of models as re-
search tools led to expanded use in the 1990s and the current
century. With widespread use in both the research and manage-
ment arenas, a review of the history, applications, limitations,
and future directions of estuarine models is timely.

Historical Trajectory of Estuarine Hydrodynamic Models

Numerical solutions to estuarine hydrodynamics have existed
since the pioneering work of Hansen and Rattray (1965). At the
simplest level, one-dimensional vertical models solve the
Reynolds-averaged Navier-Stokes equations for fluid flow,
with numerous idealizations, and yield a vertical profile of ve-
locity and salinity. These 1D modeling exercises recreated the
net landward transport of water near the bed and net seaward
transport at the surface, i.e., estuarine circulation (see Geyer
and MacCready 2014 for a comprehensive discussion). Practi-
cally, these solutions had important ramifications for under-
standing the transport of salt, sediment, and contaminants.

Inclusion of the longitudinal (along-estuary) coordinate ex-
tended the models into two dimensions and allowed for the
identification of zones of estuarine convergence and
stagnation. Festa and Hansen (1976) used such a model to
identify how salinity intrusions respond to changes in depth
and river flow, demonstrating a landward movement of an
intrusion with channel deepening. While this treatment was
sufficient for narrow and uniform estuaries, systems with an
irregular geomorphic layout required inclusion of the lateral
dimension, leading to a class of two-dimensional, depth-
averaged models. Cheng et al. (1993) extended the depth-
averaged approach in a model of San Francisco Bay to include
wetting and drying of intertidal areas. This model was instru-
mental in understanding spatial patterns in tidal velocities and
residual circulation that previously could not be resolved by
observations alone.

Officer (1980) developed an alternative approach for sim-
ulating water, salt, and constituent transport through the use of
box models. These models use forced freshwater inflows and
salinity distributions to solve for transport in a series of ho-
mogenous boxes along the estuary axis through a salt balance;
boxes can be depth-averaged or stratified (two layers). In one-
layer systems, Officer box models simulate the seaward flow
of water; in two-layer systems, they represent the gravitational
circulation, predicting seaward flow in the surface layer, land-
ward flow in the bottom layer, and vertical entrainment of salt
between the layers. Box models can also include dispersive
tidal transports using the Hansen-Rattray parameter to specify
tidal dispersion (Officer and Kester 1991).

Ultimately, many estuaries are not conducive to lateral- or
depth-averaging, and 3D solutions may be required for accu-
rate representation of hydrodynamics due to complex bathym-
etry, vertical gradients, or lateral circulation. For example,
Warner et al. (2005) developed a 3D model of the Hudson
River estuary to investigate variations in stratification during
spring and neap tides, demonstrating the skill of the model in
capturing tidal and subtidal timescale processes. Ralston et al.
(2010), simulating the Merrimack River estuary using an un-
structured grid model, showed that resolution of bathymetric
variability has a large effect on proper simulation of salt fluxes
and stratification.

Increases in computational resources have allowed for de-
velopment of more robust mixing routines, higher-resolution
domains, and inclusion of detailed circulation processes. Early
models relied on specified vertical mixing, but advanced com-
puting power has allowed for two-equation turbulence models
that solve for the transport of turbulent kinetic energy and
turbulent length scales (Umlauf and Burchard 2003). Ad-
vanced horizontal transport routines such as MPDATA
(Smolarkiewicz and Margolin 1998), which are critical for
robust simulation of scalars and constituents, are sizeable
improvements over earlier advection routines. In terms of
resolution, Zhao et al. (2010) implemented an unstructured
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grid model of the Plum Island estuary with a maximum hori-
zontal resolution of 7 m in tidal wetland creeks to investigate
inundation processes in marshes while also simulating salt
transport on the inner shelf. Increased computational power
can also uncover novel hydrodynamic mechanisms:
Olabarrieta et al. (2011) modeled wave-current interaction
with the vortex force method in Willapa Bay, Washington
and found that wave-induced setup during storms affected
exchange between the estuary and coastal ocean.

The increase in computational capacity is clear in the ex-
ponential increase in computational elements and grid resolu-
tion across numerous modeling systems (e.g., ROMS,
Delft3D, SELFE, FVCOM, UnTRIM, TRIM3D, EFDC),
computational schemes (finite-difference, finite-element, fi-
nite-volume), and domain discretizations (rectilinear, curvilin-
ear, unstructured, nested) (Fig. 1). This trend of increasing
resolution reflects the realization that complex bathymetry
and geomorphic layout have a pronounced effect on circula-
tion (and thus biology) and should be represented. Given the
availability of computational resources, most researchers
therefore opt for increased resolution wherever possible. As
the following section demonstrates, estuarine ecological
modeling has followed similar trends, though there is also a
realization that reduced complexity may result in a more ro-
bust simulation.

Historical Trajectory of Ecological Modeling

Ecological models of aquatic systems can be traced back to
the pioneering work of Gordon A. Riley (1946, 1947). Riley
adapted the Lotka-Volterra predator-prey equations to develop

the first mechanistic, process-based models of phytoplankton
(Riley 1946) and zooplankton (Riley 1947) in a marine sys-
tem, using Georges Bank in the North Atlantic as a test site.
Riley’s major advancement was to formulate models in which
changes in daily growth and loss processes were functions of
biomass, abundance of prey and predators, and environmental
variables such as temperature, light, and nutrients. These in-
dependent models of phytoplankton (P) and zooplankton (Z)
were then combined along with a state variable for nutrients
(N) to produce the first NPZ model of an aquatic system (Ril-
ey et al. 1949).

The next major phase in the application of ecological
models to aquatic systems came during the 1960s and 1970s
with the development of models primarily for estuaries, shelf
ecosystems, and lakes (summarized in Brush and Harris 2010;
Fig. 2). Early examples included Di Toro et al.’s (1971) model
of the Sacramento-San Joaquin Delta, Steele’s (1974) model
of the North Sea, and Kremer and Nixon’s (1978) model of
Narragansett Bay. These early models had limited biological
and spatial resolution, i.e., one to two phytoplankton groups,
one zooplankton group, cycling of a few inorganic nutrients,
and were either zero- or one-dimensional with relatively
coarse spatial elements. The use and complexity of models
continued to expand in the 1980s to systems such as Chesa-
peake Bay (HydroQual 1987), the Baltic Sea (Stigebrandt and
Wulff 1987), and the Ems-Dollard estuary (Baretta and
Ruardij 1988). These models added complexity, with dis-
solved oxygen as a state variable and addition of dissolved
organic and particulate forms of nutrients and implementation
in higher-resolution, 3D domains. The Ems-Dollard model
included pelagic, benthic, and epibenthic food webs, includ-
ing microphytobenthos, meiobenthos, deposit and suspension
feeders, and two groups of epibenthos. The application of
models to management began in this period, particularly re-
lated to anthropogenic nutrient enrichment and the cultural
eutrophication of estuaries (HydroQual 1987).

Models have evolved with an increasing focus on manage-
ment (HydroQual 1991; HydroQual and Normandeau Asso-
ciates 1995), increasing hydrodynamic resolution (Fig. 1), and
addition of biological and biogeochemical detail, including
watershed-estuary interactions and numerous components of
coastal ecosystems and their food webs (e.g., Cerco and Cole
1994; Baretta-Bekker 1995; Baretta-Bekker and Baretta 1997;
Billen and Garnier 1997). For Chesapeake Bay, Cerco and
Cole’s (1994) model included 22 water column state variables
including partitioning of organic material into labile and re-
fractory pools and was coupled to a detailed sediment flux
model with ten state variables (Di Toro 2001). The 2002 ver-
sion of the Chesapeake Bay model operated in nearly 13,000
cells (∼ 2-km horizontal resolution; Cerco and Noel 2004),
which has since been increased to 57,000 (US EPA 2010); it
also includes three species of seagrass, micro- and
mesozooplankton, deposit and suspension feeders, Eastern
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Fig. 1 Trends in estuarine hydrodynamic modeling complexity, from a
computational cell and grid resolution perspective. Models were selected
from peer-reviewed publications that contained full reporting of grid
domain characteristics. A variety of models are represented spanning
several continents, modeling systems, and estuarine types
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oysters, and Atlantic menhaden (Cerco and Moore 2001;
Cerco and Noel 2004, 2007; Dalyander and Cerco 2010).
Models are now essential management tools (e.g., US EPA
1999; NRC 2000; Giblin and Vallino 2003; Harris et al.
2003; Wulff et al. 2007) and are used to develop total maxi-
mum daily loads (TMDLs) for numerous estuarine pollutants
(e.g., US EPA 2010).

Despite the trend towards increasingmodel complexity and
resolution, there are trade-offs among complexity, resolution,
over-parameterization, and model uncertainty. Numerous in-
vestigators have addressed the role of model complexity
(Fulton et al. 2003, 2004; Friedrichs et al. 2006; Ménesguen
et al. 2007) and others have embraced the use of reduced
complexity and alternative modeling approaches (Rigler and
Peters 1995; NRC 2000; Pace 2001; Duarte et al. 2003; Scavia
et al. 2006; Swaney et al. 2008). Multiple modeling ap-
proaches have also been combined to inform coastal manage-
ment (e.g., Stow et al. 2003; Scavia et al. 2004).

Clark et al. (2001) promoted abandoning prediction as a
goal for ecological models, instead focusing on forecasting as
a more pragmatic modeling objective. However, this view-
point reverts to a pessimism that was warned against by Peters
(1991), who advocated for quantitative prediction as the hall-
mark of a robust ecological model. Harris et al. (2006) pro-
posed leveraging the metabolic theory of ecology (MTE) to
understand and predict estuarine ecosystem function. The
MTE is notable in ecology because predictions and
derivations may arise from first principles alone providing a
parallel to the Newtonian physics used to describe estuarine
hydrodynamics. Any efforts in ecology that improve the
theoretical basis of our models and predictions will be
critical to forging models that combine these two fields.
Harte (2002) acknowledges the challenges of combining these
scientific perspectives, calling on a synthesis of Newtonian
and Darwinian traditions. Recent examples to leverage the

MTE in ecological models (Cheung et al. 2008; López-Urrutia
2008; Harris and Brush 2012; Sinsabaugh et al. 2013; Ehrich
and Harris 2015) hint at the potential for accomplishing this
goal in estuarine models.

Philosophical Considerations in Numerical Modeling

Modelers and users of model-derived knowledge are bur-
dened by the expectation that model results should mimic
the world, while also advancing and aligning with theory.
Indeed, theoretical physicists pursuing the standard model of
elementary particle behavior allude to defining a Btheory of
everything.^ In practice, those working at the ecosystem scale
have described the constraints of numerical models designed
to explore ecology (e.g., Levins 1966), hydrodynamics (e.g.,
Blocken and Gualtieri 2012; Roache 1997), and biogeochem-
istry (e.g., Anderson 2005). Morrison and Morgan (1999)
identify three features of models that clarify their role: (1) they
are constructed in partial independence and dependence on
both the world and theory, (2) they function autonomously
from the world and theory, and (3) they are capable of
representing aspects of the world and theory at the same time.
Similar to the idea of conformation, where a representation of
a system conforms to some aspect of the system (i.e., a road
map of Albuquerque can reliably represent the roads of Albu-
querque, but not the distribution of lizard habitat in Albuquer-
que), reliable models can only be expected to conform to the
discretized equations they are solving (theory) or type of ob-
servational data to which they are calibrated (reality + mea-
surement noise). A reliable model cannot be expected to rep-
resent every aspect of the observational data (e.g., temporal
resolution of the model is coarser than real time) nor is the
representation exactly accurate as there is always some quan-
tifiable error. Longino (2002) writes, BConformation is more
suitable than true or false for expressing the ways in which
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ecological modeling as illustrated
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using the term Becosystem
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complex content, such as a theory or model, is successful
representation.^ Therefore, a model that reliably conforms to
some aspect of the system of interest can be considered a
successful and reliable representation of that aspect. Again,
reliability indicates that the model consistently and accurately
(within some error tolerance) represents the equations being
solved and the observations of interest.

Levins (1966) outlined the competing goals of generality,
precision, and realism. Modelers may strive to make their
models general, in which they are applicable to a variety of
systems with little adjustment; precise, in which they repro-
duce the observed data with minimal error; and realistic, in
which they attempt to explain the dynamics of the real system
in detail. Unfortunately, these three goals cannot be simulta-
neously achieved in practice. Increasingly, realistic models
would include asmany processes and components as possible;
however, the inclusion of poorly constrained parameters likely
erodes model precision. Simple empirical/statistical models
may maximize precision (Rigler and Peters 1995); however,
they lack the processes providing explanatory power and can-
not be used to extrapolate beyond the known range of values.
General models may need to be optimized in a way that sac-
rifices some level of both precision and realism to be broadly
applicable. Such decisions are often driven by management
context or modeling goals. Formal methods exist for identify-
ing optimal levels of model complexity for single formula-
tions or statistical models based explicitly on the information
in the data (Burnham and Anderson 2002), Similar ap-
proaches for multi-parameter, multi-state variable models are
beginning to emerge in the Bayesian arena (e.g., Obenour
et al. 2014).

Parsimony and Over-parameterization

Efforts to maximize detail and utilize the highest degree of
computational power often lead to excessive parameterization,
greater model uncertainty, and error propagation (Denman
2003; Anderson 2005; Hood et al. 2006). On the other hand,
simple models with few processes can lack important feed-
backs and interactions that are necessary for management ap-
plications (Reckhow 1999; Flynn 2005; Evans et al. 2013). To
overcome these challenges, it is important to first delineate the
conceptual extent of the model by focusing on (1) the research
question one intends to address, (2) the current understanding
of critical processes and the study system, (3) the availability
of data to support parameterization, and (4) how the model
will be used in the future.

Ideally, the research question should define the level of
realism required of a model, which may range from simple
empirical formulations to coupled models based on differen-
tial equations. Often, however, processes and state variables
beyond the scope of the research question are included to
explore other ecological processes. Adding processes and

variables increases the number of parameters and can quickly
surpass our ability to constrain the formulations (Denman
2003). If, for instance, our research question is focused on
predicting primary production, this might be achievable using
only five variables in an empirical model, as opposed to a fully
coupled atmospheric-watershed-estuarine model (see Fig. 3).
It is also important—though sometimes overlooked—to en-
sure that there is an adequate amount of data to calibrate and
validate the processes represented in the model and any relat-
ed formulations (Flynn 2005).

Several inter-comparative modeling studies and reviews
have considered the degree of complexity necessary to best
represent fundamental biogeochemical processes (Hood et al.
2006; Raick et al. 2006; Friedrichs et al. 2006; Friedrichs et al.
2007) and multi-species trophic interactions (Fulton et al.
2003). These comparisons frequently focus on multiple
criteria including performance- and skill-based metrics (e.g.,
correlation, RMS difference, standard deviation, and cost
functions). While the degree of model complexity in these
studies ranged from relatively simple NPZ models to complex
ecosystem models (containing multiple phytoplankton, zoo-
plankton, nutrient, and detrital pools and associated
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biogeochemical cycling), the results highlighted that simple
and reduced complexity models were able to reproduce data
for specific regions for which they were calibrated with the
same skill as more complex models (Raick et al. 2006;
Friedrichs et al. 2006; Friedrichs et al. 2007).

The broad use of models for management and policy ap-
plications and the limitations outlined above highlight the val-
ue of reduced complexity models (Pace 2001; Duarte et al.
2003; Ménesguen et al. 2007, Lucas and Thompson 2012).
The need for balancing parsimony with over-parameterization
leads to three commonly observed approaches: (1) begin with
a biologically and physically reasonable simple model, and
add complexity as needed; (2) begin with a complex model
and remove complexity; or (3) use multiple models with vary-
ing levels of complexity, which can be used as ensembles to
predict a range of future states (e.g., Stow et al. 2003; Scavia
et al. 2004). The latter approach recognizes that no single
model can comprehensively represent the processes and goals
for all potential applications.

This review, though focused on the future of estuarine hy-
drodynamic and ecological modeling, describes a diversity of
models. In the case of numerical models developed to meet
the needs of management for TDMLs of a pollutant to an
estuary, many use systems of ordinary differential equations
that describe the assumed mechanisms most pertinent to the
desired water quality restoration goals. These models com-
monly use the pollutant (such as nitrogen or phosphorus) as
a currency to drive these criteria so that a quantitative loading
goal may be predicted. These management tools contrast with
models developed to explore the system dynamics governing
ecosystem feedbacks or regime shifts. Examples of the latter
include models that successfully predict regime shifts of sub-
merged aquatic vegetation (SAV; Carr et al. 2012; del Barrio
et al. 2014) and shellfish larval recruitment success (Bidegain
et al. 2013). A theory of everything for estuaries may be nei-
ther practical nor desirable, but recent modeling advances
suggest that modeling tools for either science or management
will continue to improve in realism, precision, and accuracy.
In the meantime, we must be clear with managers and other
end-users regarding the appropriate application and inherent
limitations of estuarine hydrodynamic and ecological models.

Model Limitations and Their Influence
on Simulating Ecological Processes

Hydrodynamics

For numerical models, the equations governing estuarine hy-
drodynamics are well constrained and tractable when com-
pared with ecological processes. Correspondingly, field mea-
surements of physical quantities such as water level, water
velocity, temperature, salinity, and PAR are more easily

acquired with modern instrumentation than ecological vari-
ables such as nutrient or organism concentrations, feeding
rates, or biogeochemical transformations. Nonetheless, data
on physical quantities are not always available at the necessary
spatial scales. Ecological model results are quite sensitive to
the hydrodynamic framework (Friedrichs et al. 2006; Allen
et al. 2007) through advection and dependence on properties
such as temperature or irradiance, so robust evaluation of the
hydrodynamic component is imperative for coupled models.

Spatial Resolution

Due to computational limitations, a trade-off exists between
spatial resolution and simulation duration. Correspondingly,
the ability of models to represent physical processes depends
on the spatial resolution. A hydrodynamic model needs to be
able to represent the scales of physical processes relevant to
the ecological model, particularly for non-linear processes that
are not well represented by spatial or temporal averaging.
Strong gradients in hydrodynamic properties, such as salinity
fronts or those associated with lateral circulation, can corre-
spond with ecological patchiness that would not be represent-
ed in lower-resolution models. Simulation over timescales
from years to centuries requires compromise in spatial resolu-
tion (Penduff et al. 2010) and parameterization of sub-grid-
scale hydrodynamic and ecological processes.

Turbulent Mixing

Few hydrodynamic and ecological models resolve the spatial
and temporal scales of turbulence; thus, some form of param-
eterization is needed to represent mixing at scales smaller than
the grid size. Turbulent mixing can be represented simply with
constant eddy diffusivity or with a two-equation turbulence
model (e.g., Mellor-Yamada, k-epsilon, or k-omega). The de-
gree of complexity (constant, one-equation, two-equation) of
the mixing scheme has greater consequences for the ecologi-
cal model results than variations among the different two-
equation turbulence closure schemes (Umlauf and Burchard
2003; Warner et al. 2005). In most estuaries, stratification due
to salinity or temperature significantly modifies rates of verti-
cal mixing for at least part of the tidal or seasonal cycle, and
thus, it is necessary to incorporate the effects of stratification
on transport.

Turbulence closures impose rates of vertical mixing on
scalars, but additional mixing occurs from numerical diffusion
due to advection of scalar gradients. Rates of numerical
mixing depend on the advection scheme, on the grid resolu-
tion, and on the scalar gradients (Burchard and Rennau 2008).
In models with lower order advection schemes, coarse
discretization, or strong scalar gradients, the hidden numerical
mixing can be similar to or greater than the physical mixing
from the turbulence closure. While a minimum or background
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diffusivity is often imposed to reduce instabilities, numerical
mixing can be the limiting factor in the ability of models to
represent sharp gradients such as pycnoclines, lutoclines, or
thin phytoplankton layers.

Many estuaries are relatively shallow, and turbulence is
generated predominately by shear at the bed. The gravitational
exchange flow due to the salinity gradient is also extremely
sensitive to water depth. Consequently, accurate representa-
tion of the bathymetry is critical for hydrodynamic models
(Ralston et al. 2010, Ganju et al. 2011). In coarser resolution
models, the projection of bathymetry onto the grid can affect
the hydrodynamic results. For example, in a cross-sectionally
averaged model of circulation and salinity in the Hudson Riv-
er estuary, the channel thalweg proved to be the relevant depth
for predicting the salinity distribution, but modeling sediment
transport required both the channel and shoal bathymetry
(Ralston and Geyer 2009). At any model resolution, high-
quality bathymetric data is key to reducing uncertainty in the
hydrodynamic model (Plant et al. 2009).

Bottom Shear Stress and Sediment Transport

The distribution of bottom shear stress depends on bathyme-
try, water velocities, and bottom roughness. Parameterization
of the bottom roughness, whether with a roughness length (z0)
or drag coefficient (Cd), is a major source of uncertainty for
the hydrodynamic model (Davies and Lawrence 1995; Ganju
and Sherwood 2010). Bottom roughness typically depends on
bed composition, but rarely are maps of grain size, bed forms,
or vegetation available at the model grid resolution. Instead,
bottom roughness is often made uniform, defined based on
empirical relationships, or made spatially variable as a tuning
parameter. None of these options is robust, and the associated
uncertainty affects vertical mixing, sediment erosion and de-
position, and benthic fluxes such as dissolved oxygen or lar-
vae. Uncertainty in the bottom roughness can be reduced
through bottom stress measurements, for example, with
acoustic Doppler velocimeters, but collection and analysis of
such measurements are difficult.

In addition to the dependence on bottom roughness, model-
ing estuarine sediment transport is highly dependent on the
sediment properties (Amoudry and Souza 2011), which are
typically underconstrained by observational data. Important
sediment model inputs include the number of size classes,
settling velocities, erosion rates, critical shear stresses, and
initial bed conditions. Model setup and evaluation requires
characterization of sediment properties both in the bed and
in the water column, and sediment properties may vary tem-
porally with storm events or biological activity. Fluxes of sed-
iment between the bed and water column can directly affect
ecological model results through light attenuation (Xu et al.
2005; De Boer 2007) and other water-column processes.

Specification of Lateral Boundary Conditions

Defining hydrodynamic boundary conditions in most estua-
rine models is relatively straightforward compared with the
open ocean and often includes tidal water level and river dis-
charges. However, boundary conditions can be constrained by
data availability. In estuaries where wind affects mean flows
and mixing, mainland weather stations may inadequately rep-
resent the wind magnitude and distribution over water (Scully
2013), and an atmospheric model that resolves the wind dis-
tribution at the scale of the estuary may be necessary
(Raubenheimer et al. 2013). In estuaries without a major river,
groundwater may provide the primary source of freshwater
and nutrients, but determining groundwater fluxes requires
major observational effort or alternative modeling analysis
(Ganju et al. 2012).

Ecology

Biological systems are inherently complex and several process-
es are still poorly understood. Our capability to model these
processes is still notably limited by observational data avail-
ability as well as computational expense. These limitations il-
lustrate the difficulty in balancing generality, precision, and
realism; they also show how parsimony and over-
parameterization compete in ecological modeling applications.

Complexity of Biological Systems

Compared to hydrodynamic models, ecological models are
limited by the lack of fundamental deterministic equations.
As Harte (2002) stated in his comparison of the physical and
ecological worldviews, BPhysicists seek simplicity in univer-
sal laws. Ecologists revel in complex interdependencies. A
sustainable future for our planet will probably require a look
at life from both sides.^ Our conceptual understanding of ma-
rine food webs has evolved from simple food chains to com-
plex, interconnected webs with numerous species, life histo-
ries, and generalists that feed at multiple trophic levels
(Landry 1977; Baird and Ulanowicz 1989; Nixon 1992). A
model cannot include all species or functional groups, which
therefore necessitates aggregation into larger groups and the
inclusion of closure terms (i.e., specification of grazing by one
trophic level higher than that which is modeled) to ensure
model stability (Hood et al. 2006). While the tendency has
been towards increasing complexity through inclusion of
more state variables and processes, our understanding ofmany
of these variables is still incomplete, as are the data to param-
eterize and verify the models. Ecological systems are charac-
terized by high levels of individual variation, weak explana-
tory relationships, strong dependence on previous events, and
numerous potential future states that are difficult to predict
(Low-Décarie et al. 2014).
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Biological/Biogeochemical Process Understanding

Several factors are recognized as gaps in our understanding of
water quality modeling in estuaries. In a recent review,
Statham (2012) noted that improved understanding of cycling
of organic N and P, resuspension, benthic exchanges, subma-
rine groundwater discharges, and rates and magnitudes of
bacterially driven processes is needed. Challenges for end-
to-end marine modeling, which simulates systems through
higher trophic levels, include representing zooplankton as a
link between lower and higher trophic levels; simulating mac-
roinvertebrates, demersal fishes, and behavioral movement of
fishes; and including feedbacks from biota to physical-
chemical processes (Rose et al. 2010). To address these gaps,
it is important to develop methods and studies that can
advance our understanding of poorly constrained model
formulations. Uncertainty is associated with model structure
and complexity; Link et al. (2012) provided multiple methods
to address this. In addition to these recognized aspects of
uncertainty, the model may contain hidden uncertainties
which may not be fully characterized. The iterative nature of
adaptivemanagement allows for systemmodels to incorporate
additional information and understanding as it becomes avail-
able (Stow et al. 2003), providing a means of addressing un-
certainties as they are recognized. For many processes, under-
standing of basic ecological dynamics has not advanced suf-
ficiently to be accurately incorporated into models (e.g.,
Anammox; van Niftrik and Jetten 2012). Given the difficulty
of sampling processes beyond limited spatiotemporal scales, a
relevant question arises: should we ignore poorly quantified
processes or use sparse data to parameterize the best we can?

Spatial and Temporal Resolution

The spatial scales of processes often drive the spatial resolu-
tion in a model. In some estuaries, regional patterns tend to
dominate seasonal biogeochemical cycles. Much of the data
available to validate models are collected at regionally based
monitoring stations or measured intensively at a few strategic
locations during short-term research studies. Thus, there is a
utility in using regional scale model computations (i.e., box
and tidal prism models) in many ecosystems (Lake and Brush
2015) and when developing and calibrating ecological formu-
lations (Ménesguen et al. 2007). However, continuous moni-
toring by buoy arrays and other observation networks has
demonstrated patchiness in phytoplankton production and
biomass (Harding et al. 2005; Martin 2003). Patchiness can
exist in perfectly uniform physical environments through
mechanisms theoretically attributable to diffusive instabilities
(e.g., Mimura and Murray 1978) or social interactions (e.g.,
swarming, Okubo 1980). Although this suggests that physical
structure is not necessarily predictive of biological structure at
all scales of interest, modelers have sought to increase spatial

resolution to capture dynamics at these finer scales. It has been
argued, however, that Bsmall-scale temporal and spatial reso-
lution gives the illusion of substantial knowledge^ (Reckhow
1999), when we simulate spatial patterns that we cannot con-
firm, cannot validate, and may not fully understand.

Temporal resolution is typically less limiting for biogeo-
chemical processes than spatial resolution. The timescale of
most highly resolved models (e.g., minutes) are sufficient to
capture the dynamics of the key biogeochemical processes. In
fact, even the earliest marine ecosystem modeling studies were
able to capture seasonal cycles of phytoplankton and zooplank-
ton dynamics (Riley 1946). In many instances, the underlying
formulations represent a daily approximation (Kremer et al.
2010) and are based on experiments measured on timescales
of a few hours. This raises several important considerations: (1)
is it realistic to scale measured rates to such short model time
steps (minutes), (2) are model time steps limited by past mea-
surements and sampling techniques, and (3) what previous
model formulations (e.g., phytoplankton growth rates) may
incorrectly predict biomass when applied at short time steps
(Ménesguen et al. 2007)? In many instances, high temporal
resolution is required to capture short-term processes including
dynamic chlorophyll and oxygen cycles in shallow, productive
systems where concentrations can vary by orders of magnitude
in a given day (e.g., Tyler et al. 2009) or in systems where
aggregation of hydrodynamic output (to a 1-h time step) may
fail to resolve tidal dynamics.

Linking Hydrodynamic and Ecological Models

Estuarine hydrodynamics and ecology can be simulated using
combinations of disassociated or integrated models and may
be run simultaneously or sequentially. We must distinguish
first between these modeling configurations and their benefits
and drawbacks. The first type of configuration is the offline,
no-feedback modeling system (Fig. 4). In this case, hydrody-
namic simulations are run for a prescribed period, the output is
stored, and then it is used as input to a separate ecology model
with or without spatial or temporal modification (e.g., Wool
et al. 2003). One benefit is that the ecological model can be
run multiple times with the same hydrodynamic input, elimi-
nating the need for repeating costly hydrodynamic calcula-
tions. One drawback is that some post-processing of hydrody-
namic model output may be necessary, and this may change
the fidelity of the hydrodynamic results (e.g., vertical mixing
may not be congruent with the original simulation). In the
second configuration, online with no feedback, the models
are integrated into the same compiled executable, such that
hydrodynamic model output is passed internally at runtime
to the ecological model with no need for modification. There
is no loss of fidelity in this case, because the models are os-
tensibly running on the same grid and time step; however, one
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must re-run hydrodynamics each time an ecological parameter
is changed, even though the ecological parameter change has
no effect on hydrodynamics. The last configuration is the on-
line system with feedback between hydrodynamics and ecol-
ogy: all routines are integrated into the same compiled execut-
able, with feedback from the ecological model to the hydro-
dynamic model. The models may also be developed as mod-
ules that are coupled in a framework at runtime (Bruggeman
and Bolding 2014).

Offline, No-Feedback Models

Offline, no-feedback models consist of two independent com-
ponents that are integrated such that the output of one model is
used as input for the next model. The one-directional passing
of information may omit feedbacks between models, but it
allows users to more quickly conduct sensitivity analysis,
and run many scenarios.

Early examples of offline modeling are found in the work
of Cloern (1991) and Koseff et al. (1993). In both of those
studies, a one-dimensional (vertical) model for phytoplankton
growth was implemented, with hydrodynamics incorporated
only through the eddy diffusivity (turbulent mixing) term.
Cloern (1991) used a vertically uniform value, while Koseff
et al. (1993) prescribed realistic vertical profiles of eddy dif-
fusivity. These studies showed how phytoplankton blooms in
estuaries can be modulated by turbulent mixing and
stratification, and explained the tendency of blooms to occur
during neap tides in San Francisco Bay when mixing was
minimized. In contrast to deep, partially mixed estuaries,
shallow eutrophic estuaries often harbor extensive benthic
primary producers. Trancoso et al. (2005) spatially integrated

hydrodynamic output and repeated tidal forcing to drive a
water quality module that added macroalgae as a primary
producer in a eutrophic lagoon. Simulating hydrodynamics
and ecology simultaneously would have prohibited annual-
scale simulations, and the model showed that inclusion of
macroalgae produced water quality results more consistent
with field data than with phytoplankton alone. Kremer et al.
(2010) similarly analyzed hydrodynamic model output to de-
velop a daily exchange mixing matrix for simulating ecology
in Narragansett Bay. The approach provided a cost- and time-
efficient solution that was appropriate when the spatial and
temporal scales needed for the ecology simulation was
coarser than the scale used for hydrodynamic simulation.
Cerco and Noel (2013) modeled decadal-scale eutrophication
processes in Chesapeake Bay with an ecological module that
received offline input from atmospheric deposition, water-
shed, and hydrodynamic models. Decoupling the ecological
component from the physical models allowed for a 21-year
simulation that would likely be onerous in a fully online sim-
ulation. With this approach, the authors showed that annual
variability in hypoxic volume and water quality was strongly
controlled by physical processes such as stratification.

A different approach to offline, one-way coupling is the use
of particle tracking in which numerical drifters follow the flow
from the hydrodynamic model but are subject to biological
behavior (vertical migration, growth, reproduction) or geolog-
ical processes. For instance, Culberson et al. (2004) explored
the effects of vertical migration on the dispersal of larval fish
in the San Francisco estuary. North et al. (2005, 2008) con-
ducted similar studies for striped bass eggs and oyster larvae
in the Chesapeake Bay. More complex biological behavior
including reproduction, growth, and mortality has been

Hydrodynamics Ecology

Hydrodynamics Ecology

Hydrodynamics

Ecology

pass output 
at end of run
(e.g. h, T, S)

Offline, with no feedback 
(one-way coupled)

Online, with no feedback 
(one-way coupled)

Online, with feedback 
(two-way coupled)

pass output 
at model time step

(e.g. h, T, S)

pass output 
at model time step

(e.g. h, T, S)

pass output 
at model time step
(e.g. SAV biomass)

Fig. 4 Examples of three model
coupling configurations for
simulating hydrodynamics and
ecology; variables h, T, and S
represent water depth,
temperature, and salinity,
respectively
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coupled to a hydrodynamic model of the San Francisco estu-
ary to characterize the population dynamics of delta smelt
(Rose et al. 2013) following an individual-based modeling
(IBM) approach. Similarly, Canal-Vergés et al. (2014) simu-
lated drifting macroalgae as evolving particles and studied
their effect on eelgrass recovery in Odense Fjord (Denmark).

Online, No-Feedback Models

Online, no-feedback models implement the hydrodynamic and
ecological algorithms simultaneously, but information only
passes from one model to the other (typically from hydrody-
namic to ecological). In this approach, hydrodynamic variables
modify ecological processes, but there is no feedback from
ecological variables to the hydrodynamics. This approach is
computationally more expensive than the offline method, but
ensures seamless passing of quantities with no spatiotemporal
resampling or interpolation. For example, Lucas et al. (1999a,
b) integrated phytoplankton as a scalar quantity into the
advection-diffusion routine of a depth-averaged hydrodynamic
model to investigate the effect of tidal processes on primary
productivity. With their online model, they showed the impor-
tance of horizontal transport on bloom formation, extending the
offline work of Cloern (1991) and Koseff et al. (1993). Online
coupling can be optimized by updating the biogeochemical
fields less often than the hydrodynamics: Xu and Hood
(2006) modeled the phytoplankton and light attenuation
changes in Chesapeake Bay during dry and wet conditions
with a biogeochemical time step that was 20 times larger than
the hydrodynamic component. This computational savings
allowed for annual simulations and comparison of the relative
influence of freshwater flow on ecological dynamics. Banas
et al. (2007) modified the tracer transport scheme in a 3D hy-
drodynamic model to add chlorophyll as a scalar in simulations
of Willapa Bay. They showed that most of the oceanic chloro-
phyll advected into the estuary leaves without being consumed
by local grazing and tidal current structure.

Online, Feedback Models

Online modeling with feedback is necessary when ecological
state variables affect hydrodynamics. One example is the in-
fluence of submerged and emergent vegetation on drag and
circulation. In the case of emergent vegetation, increased drag
traps sediment, increases accretion, and helps maintain eleva-
tion of the marsh plain relative to the water surface. Without
this feedback in a model, deposition would likely be
underestimated. SAV also tends to trap sediment, reduce tur-
bidity, and increase light availability to seagrass beds. If this
positive feedback is ignored in a model, light attenuation
would be overestimated and productivity underestimated.

Temmerman et al. (2005) implemented feedback between
marsh vegetation and hydrodynamics in a 3D model of the

Scheldt estuary. Drag and turbulence were modified as a func-
tion of stem diameter and number of stems per unit area. They
found that this feedback led to the formation of tidal channels
and the familiar levee-basin topography found in wetland
complexes. Similarly, Chen et al. (2007) modified a 3Dmodel
to account for drag and wave attenuation due to seagrass.
Reductions in shear stress and wave energy decreased sedi-
ment concentrations and transport, representing a positive
feedback for maintenance of seagrass meadows. Future stud-
ies of emergent and submerged vegetation should account for
feedbacks between biomass production and physical drivers.
While sedimentary and biological light attenuation and ab-
sorption have been considered in several models (e.g., del
Barrio et al. 2014), the effect of absorption as a reduction of
available heat to alter stratification in the water column re-
mains a research topic that could be addressed with an online
coupled system (Wetzel et al. 2006; Lengaigne et al. 2007).

Skill Assessment

Skill Metrics

Model assessment requires both qualitative and quantitative
evaluation (Fitzpatrick 2009). Although qualitative assess-
ments help answer heuristic questions about how Bgood^ a
model is, quantitative skill metrics are necessary for compar-
ing, developing, tuning, and improving predictive models.
Modeling is an iterative process and quantitative skill metrics
provide objective means of evaluating the iterations.

Stow et al. (2009) and Fitzpatrick (2009) summarized many
of the main approaches for skill assessment. Numerous statis-
tical approaches have been used to quantify model goodness of
fit on a univariate basis, including (1) basic error metrics (e.g.,
absolute, relative, and root mean square error), (2) correlation
and regression of observations and predictions, (3) parametric
(e.g., t tests) and nonparametric tests (e.g., Wilcoxin test), (4)
plots of model bias, cumulative error, and cumulative density
functions, and (5) receiver operator characteristic (ROC) curves
(Thomann 1982; Reckhow and Chapra 1983a; Parrish and
Smith 1990; Reckhow et al. 1990; Mason and Graham 1999;
Haefner 2005; Brown andDavis 2006; Fitzpatrick 2009; Sheng
and Kim 2009; Stow et al. 2009). Taylor and Target diagrams
provide additional visual methods for displaying multiple error
metrics on a single plot (Jolliff et al. 2009).

Model skill scores provide a means of quantifying model
goodness of fit; these are a measure of the normalized error of
a model’s predictive capability. Model skills are usually
assessed by using the misfit between model predictions and
data, but it is important to note that this misfit is not the same
as the model error (Stow et al. 2009). In addition to the misfit
caused by model error, uncertainty in how well the data re-
flects the true state of a system also contributes to the
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discrepancy between model predictions and observations. The
model-data misfit is usually normalized, and how this is done
greatly affects the skill score and what it represents.

An instructive approach to skill assessment is the Brier skill
score (Brier 1950), which normalizes the model misfit by the
misfit relative to a Breference^ model:

skill ¼ 1−

1

N

X N

i¼1
xo;i−xp;i
� �2

1

N

X N

i¼1
xo;i−xr;i
� �2 ð1Þ

where the vector of observations xo,i contains Nmeasurements,
xp,i are the model predictions at the same time and location of
the data, and the vector xr,i are the predictions of the Breference
model.^ The reference model may be climatological data, or if
the reference model is taken to be the mean of the data vector,
xo, then skill score is equivalent to the model efficiency of Nash
and Sutcliffe (1970). Defined this way, the skill score can be
decomposed as the correlation coefficient squared minus two
additional terms (Murphy 1988):

skill ¼ r2− r−
σp

σo
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−
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ð2Þ

where an r is the correlation coefficient between observations
and predictions, σ is the standard deviation, and an overbar
represents a time average. The second term, or conditional bias,
is the difference in variance between the model and the obser-
vations and is zero when the slope of the regression line equals
1. The third term, or unconditional bias, is the mismatch of the
means, and is equal to the intercept of the linear regression. The
maximum skill is 1, and a skill of 0 represents a mean square
error equal to the variance of the observations.

Combining Skill Assessments

Observational data used for model skill assessment can never
have the spatial or temporal coverage of the model itself, and
skills are only meaningful for the spatial and temporal coverage
of the dataset used for the evaluation. If multiple sets of
measurements are available, it can be useful to collapse
multiple univariate skill assessments into single multivariate
combined scores. Stow et al. (2009) presented the multivariate
cost function, J, as a single measure of overall model skill:

2Jxp ¼ xp−xo
� �T

R−1 xp−xo
� � ð3Þ

where xo and xp are the observations and predictions for all
variables at all observed locations, T indicates the transpose
of a vector, and R−1 is the inverse of the covariance matrix.
The cost function simultaneously assesses model skill across
multiple variables with disparate units, measurement frequen-
cy, and uncertainty. Note, however, that Eq. 3 provides equal

weight to each observation.
Combining multiple skill scores in this manner is most

feasible when the observational data sets are similar, e.g.,
buoys that are deployed contemporaneously or CTD casts
made at a common set of stations. When observational data
are sparse, additional care must be taken in evaluating means
across multiple dimensions to account for differences in the
number of observations at different locations or times.
O’Donnell et al. (2009) andMcCardell (2012) combined mul-
tiple Brier skill scores from distinct observational data by
using mean relative errors which were then combined as a
root-mean-square:

Combined skill ¼ 1−
1

n

X n

i¼1
1−skillið Þ2
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2
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where skilli are defined such that (1 − skilli) represents the nor-
malizedmodel errors of the n individual skills to be combined. In
Eq. 4, each individual skill (such as that from an individual
dataset) receives equal weight in the overall score as opposed
to each observation receiving equal weight. Any combination
of skills must, of course, be judicious: individual skills by loca-
tion, depth, season, or parameter contain far more information
about model performance than any overall combined score.

Parameter Estimation and Improved Skill Through Data
Assimilation

One method to increase skill is to use data assimilation to
blend observations and dynamical models to make better es-
timates of parameters. The approach is generally valid when
there is sufficient knowledge of the underlying processes’ var-
iability and sources of error. The differences between model
and observations can be due to poor model representation of
the physical or ecological process, deficient selection ofmodel
parameters, and/or observational errors. While data assimila-
tion has often been applied to estuarine hydrodynamics (Spitz
and Klinck 1998; Bertino et al. 2002; Xu et al. 2002; Frolov
et al. 2009), the extension into ecological modeling is still
mostly in development (Zhao et al. 2005; Cossarini et al.
2009). Data assimilation improves the statistical match be-
tween observations and the model but may result in physically
unrealistic conditions elsewhere in the domain and can mask
underlying deficiencies in the model. The Kálmán filter
(Kalman 1960), which partitions observational and process
uncertainties, is receiving increased application in ecology
for its treatment of both time and space (Hinrichsen and
Holmes 2009).

Considerations and Concerns Regarding Skill Assessment

No single approach to skill assessment is perfect, nor can one
approach provide a comprehensive view of model
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performance. It is therefore important to use multiple lines of
evidence in assessing model skill, for example, combining
qualitative assessment of goodness of fit with quantitative skill
metrics (e.g., Stow et al. 2009; Brush and Nixon 2010). Stow
et al. (2009) also highlight that error exists in both observa-
tions and model predictions. Observational error results from
sampling bias, analytical error, poor replication, and variabil-
ity in both time and space. Prediction error results from im-
precisely constrained parameters and numerical error.
Given both sources of error, metrics that allow for both
types of uncertainty will be most meaningful in assessing
model skill.

Though traditional skill assessment almost exclusively
focuses on comparison of observed and predicted states,
recent work has highlighted the importance of accurately
simulating key rate processes as well (Brush et al. 2002;
Grangeré et al. 2009). This ensures that accurate model
predictions of concentrations or biomass are achieved
with reasonable inputs and outputs, i.e., that the model
is Bgetting it right for the right reason.^ For example,
ecological models for prediction of hypoxia or other
symptoms of eutrophication should accurately simulate
not only phytoplankton biomass but also the rates of pri-
mary production and system respiration; this ensures ac-
curate simulation not only of phytoplankton but also the
production and consumption of oxygen, development of
hypoxia/anoxia, cycling of nutrients, and flows of carbon.
Coordination of observational and modeling campaigns in
a given system is necessary such that process measure-
ments and model simulations match in space and time.

Because skill metrics are typically based on model-data
goodness-of-fit (Fitzpatrick 2009), which places emphasis
on aligning the central tendency of a model with the central
tendency of observations, Bimprovement^ is often achieved
through the addition of parameters that reduce model
precision and increase model complexity. A skill comparison
between a simple and complex model will almost always
favor the addition of parameters because there is no penalty
incurred from the increase in degrees of freedom. Burnham
and Anderson (2002) use the Akaike information criterion to
assess statistical model performance taking into consideration
both model-data misfit and the number of parameters, but
such an approach for complex mechanistic models is compu-
tationally impractical. Similarly, applications of numerical
methods such as Markov chain Monte Carlo simulation and
Bayesian techniques are emerging (Malve et al. 2007, Robson
2014). This approach is usually impractical in higher-
resolution coupled models, but Obenour et al. (2014) success-
fully applied Bayesian inference techniques to box modeling
of hypoxia in the Gulf of Mexico. In any case, better knowl-
edge about the expected statistical distribution of skill metrics
could lead to optimization of the trade-off between accuracy
and precision.

Balancing Spatial and Temporal Resolution

Hydrodynamic and ecological models are characterized by
differing requirements for temporal and spatial resolution. Hy-
drodynamic models typically operate over time steps on the
order of seconds with grid resolutions on the order of 101–
103 m. Ecological models may not need to operate at these
same scales; typical biological rates like growth, respiration,
and mortality fluctuate over periods of days to weeks, while
other key rates (i.e., photosynthetic production) fluctuate over
diel cycles in which hourly resolution is often sufficient. This
is not to say that fine-scale biological interactions are unim-
portant to ecosystem-level processes, but current knowledge is
insufficient to capture them reliably or to test hypotheses
about their effects on system-level patterns. Thus, while
fine-scale simulation may be necessary to adequately simulate
ecological patchiness, the coarseness of the questions being
asked and the limited availability of ecological data mean that
ecological simulation at coarser scales may be appropriate for
many model applications.

The trade-offs involved in the balance between spatial and
temporal resolution in estuarine models is best illustrated
through a review of model applications. In the following ex-
amples of model space-time complexity, Blow^ spatial resolu-
tion is that greater than 1 km, and Blow^ temporal resolution is
a day or longer.

Low Spatial, Low Temporal Resolution

Despite recent growth in complexity and resolution, models of
low spatiotemporal resolution continue to serve as valuable
heuristic and management tools. A number of these are em-
pirical models that describe the relationship between a vari-
able of interest (e.g., chlorophyll, primary production, hypoxic
volume) and one or more controlling variables (e.g., nutrient
loading, chlorophyll; Cole and Cloern 1987; Nixon et al.
1996; Brush et al. 2002; Lee et al. 2013). Some of these em-
pirical formulations (Evans and Scavia 2011; Forrest et al.
2011; Liu et al. 2011; Murphy et al. 2011; Turner et al.
2012; Lee et al. 2013; Scavia et al. 2013) are used operation-
ally to produce annual forecasts of estuarine and coastal water
quality in the Chesapeake Bay and northern Gulf of Mexico,
with a focus on hypoxia/anoxia (IAN 2014; NOAA 2014). In
general, these models predict variables at a single place or
over a defined area and are primarily used to understand the
dominant controls on a variable of interest and synthesize
information across disparate study systems to look for general
patterns. Such models do not include mechanisms explicitly,
but mechanisms are often inferred based on our knowledge of
the system derived from experimental and observational ef-
fort. Lower-resolution box models account for greater tempo-
ral and spatial variability than statistical models, but necessar-
ily idealize transport and ecological processes. Nonetheless,
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these have successfully been used to analyze estuarine hypox-
ia (Hagy and Murrell 2007), quantify estuarine budgets
(Boynton et al. 2008; Testa and Kemp 2008), and serve as
ecosystem simulation models (Scavia et al. 2006; Ménesguen
et al. 2007; Brush 2012; Lake and Brush 2015).

Turner et al. (2006) developed a statistical model to under-
stand and predict hypoxia in the northern Gulf of Mexico; this
application represents a low temporal (annual) and spatial
(O ∼ 104 km2) resolution case study. The region has a well-
documented history of oxygen depletion in the coastal zone,
ostensibly due to watershed inputs of nutrients from the Mis-
sissippi River. Extensive data of nutrient loadings (forcing
data) and hypoxic zone area (prediction target) drove a statis-
tical model that predicted over 80 % of the variation in hyp-
oxic zone area over a 26-y period. The strongest drivers were
nitrogen input and time; the time variable corresponded to
temporally increasing carbon storage in benthic sediments,
thereby increasing sediment oxygen demand. The authors
used this mechanistic information to suggest that hypoxia
could be mitigated by a focus on nitrogen load reduction rath-
er than phosphorus. In this case, despite a lack of resolution in
space, time, and process description, the statistical model
proved its value in predicting hypoxic extent.

High Spatial, Low Temporal Resolution

Some ecological models focus on the description of ecological
processes that do not change in a small period of time, but are
spatially variable. An example is the presence or absence of
seagrass which is temporally steady over a growing season but
highly variable in space. Models with high spatial and low
temporal resolution may address the influence of light avail-
ability and sea level rise on seagrass presence/absence (del
Barrio et al. 2014), the effects of eutrophication, pollutants
and macroalgae competition on seagrass biomass distribution
(Giusti et al. 2010), seagrass shoot densities (Bearlin et al.
1999), and the conditions necessary for the restoration of sub-
merged vegetation (Duarte et al. 2013). High spatial resolution
is necessary for seagrass modeling as shoot density and root
biomass vary with sediment type and light availability. Time
resolution can be low (days, months, seasons, years) for
seagrass dynamics due to low growth rates, long biological
timescales, and seasonal variability of the different species
(Alexandre et al 2008).

One example of a high-spatial/low-temporal resolution
model is presented by del Barrio et al. (2014), where a coupled
high spatial (10 m), low temporal (seasonally averaged)
seagrass model was applied to West Falmouth Harbor, a eu-
trophic estuary in Massachusetts, USA. This model predicted
seagrass presence/absence as a function of light availability
with a spatial resolution of 10 m, whereas the temporal reso-
lution was 2 months. This tool was used to evaluate future
seagrass presence/absence based on nitrogen loading and sea

level rise. With these two forcings applied separately, the
model predicted an expansion of seagrass presence with nitro-
gen reduction whereas sea level rise reduced light availability
to the canopy, reducing seagrass coverage. The combined ef-
fect suggested an overall expansion of seagrass meadows due
to the reduction of nutrient loads, with sea level rise playing a
secondary role over the short term. In the long term, once
nutrient loadings reached a baseline level, sea level rise be-
came more relevant as meadows migrated landward to adjust
to the light climate. This offline, no-feedback model simpli-
fied the temporal evolution of seagrass meadows but resolved
spatial variability in detail.

Low Spatial, High Temporal Resolution

Some model applications require that a process or system be
simulated at high temporal resolution, but at low spatial reso-
lution. The demand for this particular time/space trade-off
results from the need to accurately simulate processes that
operate over short timescales (e.g., organismal physiology),
but without a substantial spatial representation. In estuarine
environments, high spatial resolution is often required to cap-
ture hydrodynamic or bathymetric variability; if one is simply
interested in algal physiology or plankton community interac-
tions, a one-dimensional model may be sufficient, as with
many applications of NPZD models (Fasham et al. 1990;
Oguz et al. 2000; Soetaert and Middelburg 2009). Other ex-
amples of models with low spatial, but high temporal resolu-
tion include box models (Webster and Harris 2004) and sed-
iment biogeochemical models (Hochard et al. 2010; Brady
et al. 2013).

As an example of a low-spatial/high-temporal resolution
model, Testa et al. (2013) applied a sediment flux model to
simulate biogeochemical processes between the water column
and sediment bed in Chesapeake Bay. The model spatially
simplified the estuary to individual stations represented by
three layers: the water column, the aerobic sediment layer,
and the anaerobic sediment layer. The simulation time step
was 1 h, which would be necessary to capture daily cycles
of light, production, and respiration in applications where ben-
thic algae were modeled explicitly. Application of this point-
based model indicated the importance of denitrification in the
aerobic layer and illustrated spatial variability between multi-
ple site locations. This type of model can be expanded hori-
zontally (to a higher-resolution model domain) or vertically
(with additional sediment layers), or it can be embedded in 3D
coupled models to produce high-spatial, high-temporal reso-
lution models.

High Spatial, High Temporal Resolution

From a realism perspective, simulation of estuarine hydrody-
namics and ecology requires both high spatial and temporal
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resolution to capture physical and biological processes and
their interactions. Many models that simultaneously simulate
phytoplankton, dissolved oxygen, nutrient cycling, hydrody-
namics, and sediment dynamics fall into this class (Xu and
Hood 2006; Li et al. 2009; Zhang and Li 2010; Khangaonkar
et al. 2012; Testa et al. 2014; Xue et al. 2014). Many models
used in coastal water quality management opt for this high-
resolution configuration, and advances in computing power
have removed most barriers to representing meter-scale
bathymetry.

Examples of realistic, highly resolved models include 3D
coupled hydrodynamic-biogeochemical models that have
been used to understand the impacts of freshwater and nutrient
loading on the biogeochemistry of coastal ecosystems (e.g.,
northern Gulf of Mexico, Fennel et al. 2011; Chesapeake Bay,
Cerco and Noel 2013, Xu and Hood 2006, Testa et al. 2014;
Baltic Sea, Neumann and Schernewski 2008). Such models
may simulate watershed and atmospheric loadings, hydrody-
namics, sediment transport, water-column biogeochemistry,
and sediment diagenesis and thus can be used to understand
interactions between external forcing (river flow, wind, nutri-
ent load) and internal biogeochemical cycling. With horizon-
tal resolution of ∼1 km and time steps of <5 min, these models
resolve bathymetric gradients and tidal timescale processes. In
the case of the Chesapeake Bay and the northern Gulf of
Mexico, model simulations have revealed the balance be-
tween stratification and nutrient loading in controlling anoxia
(Cerco and Noel 2013), the spatial and temporal nature of the
response of phytoplankton and hypoxia to elevated nutrient
loading (Testa et al. 2014), and controls on phytoplankton
biomass accumulation (Fennel et al. 2011). In all of these
cases, the 3D coupled models provided understanding of the
system beyond what previous statistical models provided,
which illustrates the balance between generality (statistical
model) and realism (fully coupled model).

Future Considerations

Applications of Models Beyond Research

The models used for estuarine research and management span
multiple spatiotemporal scales and levels of complexity. The
size and complexity of the model as well as the software
platform and user interface will reflect the purpose of the
model and its intended user groups. In recent years, complex
models that required a skilled modeler were favored by the
management community. Examples include the USGS SPAR
ROW model (Spatially Referenced Regression on Watershed
Attributes; Moore et al. 2011), EPA WASP model (Water
Quality Analysis Simulation Program; Ambrose et al. 1993),
Chesapeake Bay Program Eutrophication Model (Cerco and

Noel 2004), and Long Island Sound Study SWEM
(Systemwide Eutrophication Model; HydroQual 1991).

While federal, state, and local managers still rely on com-
plex models requiring scientific expertise, a growing trend has
been to develop models accessible to the management com-
munity and other stakeholders without such expertise. In these
cases, end users may alter model inputs within a reasonable
range to assess the impact of various management decisions.
A growing number of such models have been developed, es-
pecially in areas such as shellfish aquaculture where science,
business, and management interact (e.g., Kellogg et al. 2014).
The USGS has responded to the needs of the management
community by providing a user interface for the SPARROW
model that allows end users to explore the potential effects of
changes in the watershed on the delivery of nutrients to
streams and estuaries (Preston et al. 2011). Other models of
nutrient delivery have been developed that allow users more
control of locally relevant inputs, including the Nitrogen
Loading Model (NLM, nload.mbl.edu; Valiela et al. 1997b,
2000) and the Regional Nutrient Management model
(ReNuMa, Hong and Swaney 2013). Similar user-accessible
models of estuarine response to nutrient loading and climate
change are being made available to stakeholders through web
browsers (Brush 2014). Improved user interfaces and a de-
crease in the technical skill required of the end user greatly
expand access to a variety of model applications.

The advances in accessibility have also made it possible for
models to be used in educational settings, from middle school
classrooms to graduate level courses. While web-based, fast-
running models may be easily adapted for college courses,
similar usage in secondary education requires cooperation be-
tween model developers and educators to translate Bcomplex^
models into easy-to-understand, interactive lessons. Ewing
et al. (2003) noted that modeling has been Brelegated to the
corners of the undergraduate curriculum^ and that modeling
has Benormous education potential but that potential is cur-
rently largely unmet.^ Exploration of model results and par-
ticipation in model building foster a more thorough under-
standing of ecosystem processes and naturally complement
the analytical and quantitative skills emphasized in a STEM-
based curriculum. The use of models for management deci-
sions should be accompanied by a greater understanding in the
general public of how models work, and integration of con-
ceptual and mathematical modeling in secondary and under-
graduate level programs presents that opportunity.

The utility of a model depends on a clear description of its
attributes and limitations, including the assumptions and pro-
cesses behind the model, potential errors and how error may
be reduced, and the methods for verifying the results. Consid-
eration of these issues is necessary for advancing the use of
models in management and education, extending scientific
knowledge into the realm of practical application. Potential
obstacles can be navigated by (1) maintaining an open dialog
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with end users (via outreach workshops), (2) including rele-
vant metadata in a standard format, (3) utilizing an interface
that limits the users input to reasonable and appropriate sim-
ulations, and (4) providing accessibility and visualization
tools that are intuitive.

Transparency and Utility: Making Model Output
Accessible to End Users

Historically, numerical model code and output were opaque
due to widely varying standards for documentation and long-
term storage. Open-source philosophies and new web-based
tools are shifting towards transparency. Modeling source code
used to be modified in ad hoc fashion and then passed to other
modelers via e-mail or FTP. Now, many source codes are
stored in publically available revision control systems such
as SVN or GIT. These systems allow users to browse code,
easily track revisions, and recover the exact code used to per-
form simulations. This approach builds community under-
standing, an environment of trust, and the opportunity for
reproducibility.

Model output used to be stored on investigators’ machines
and shared with users as derived products such as time series
or section plots. Now, many models write self-describing ma-
chine-independent binary files such as NetCDF or HDF from
which data can be efficiently accessed via standard web ser-
vices, such as OPeNDAP (Cornillon et al. 2003). Software
now exists to turn attributes stored in these files into ISO
metadata records, allowing harvesting into data catalog sys-
tems designed to service a broad range of users such as data.
gov. With data and metadata discoverable and accessible via
services, scientists and developers can more effectively
discover, access, and utilize model output (e.g., Signell and
Snowden 2014). Data portals that leverage this infrastructure
can then easily be constructed for targeted end-user commu-
nities. Online viewers, such as the MARACOOS asset viewer
(assets.maracoos.org) and AOOS model explorer (http://data.
aoos.org/maps/search/models-grids.php) enable non-expert
users to visualize model output, map model results on top of
different GIS layers, and compare with field data and with
other models. In addition to serving output data sets, input
datasets are also being shared via services, so users can exam-
ine input parameters and boundary conditions.

Recent efforts to engage end users in participatory model-
ing have focused on encouraging a shared ownership and
development of numerical tools that are designed to inform
management. A recent example of this is BFishSmart,^ a col-
laborative modeling exercise among academic modelers,
commercial fishers, recreational anglers, and natural resource
managers for the King Mackerel fishery (Miller et al. 2010).
As has been suggested by social scientists (Paolisso et al.
2013), the success of such an effort rests heavily on the par-
ticipatory process, in this case involving professional

facilitators and a consensus-building approach to a series of
workshops. Perhaps, the largest scale effort in this vein for
restoration purposes has focused on the Everglades, where
powerful economic forces have intersected with water quality
goals and government management of water resources (van
Eeten et al. 2002; Loucks 2006). In all of these instances, the
modeling framework is the predominant decision-based tool
being used to set regulatory actions (allowable catch, mini-
mum catch size, nutrient loads, water use). Kelly et al.
(2013) provide a decision tree to guide the selection of a
modeling approach to be used for informing management,
according to several considerations, including the reason for
modeling, data availability, and the scale and processes of
interest.

Recommendations

Modeling has emerged as a leading approach to the study and
management of estuarine systems, and the importance of
models will only increase during the current century. Avariety
of models exist that span multiple approaches (e.g., empirical,
theoretical, mechanistic), spatiotemporal scales (e.g., seconds
to years, meters to kilometers), degree of coupling (e.g.,
offline, online), and degree of complexity, and all provide
important insights into estuarine system function. Models
are working hypotheses about how a system functions, and
no one model is Bright.^ Similarly, no one model can singu-
larly optimize the competing goals of generality, precision,
and realism nor balance the trade-offs between complexity,
over-parameterization, and uncertainty. In light of this review,
we offer the following recommendations for future efforts in
developing coupled hydrodynamic and ecological models of
estuarine and coastal systems:

(1) While the trend in modeling has been towards increasing
resolution and complexity, more parsimonious, reduced,
and intermediate complexity models offer useful alterna-
tives that should be pursued in concert with complex,
highly resolved models. These simpler models are par-
ticularly amenable to direct use by stakeholders and in
STEM education. Modelers should consider the appro-
priate resolution and complexity necessary to address the
research or management question at hand.

(2) Modelers should rigorously evaluate model formulations
and parameter values and test model output against the-
ory and observations, rather than relying on Boff-the-
shelf^ models as truth. Increasing transparency in model
code will allow the wider community (including model
developers, empirical scientists, managers, and model
end-users) to better evaluate model assumptions, formu-
lations, and parameterizations.
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(3) Training of the next generation of researchers should
include cross-fertilization and development of skills in
both observational and modeling techniques. Given the
importance of developing physically and ecologically
meaningful models rooted in empirical understanding,
it will be increasingly important for modelers and empir-
icists to work together to develop more robust models.

(4) Resources should be directed to develop and maintain
long-term, spatially comprehensive observational data-
bases, using accepted data standards. Given the impor-
tance of calibrating and independently verifying model
performance against observations, these databases
should be well documented and accessible. It is critical
to verify model predictions of both state variables and
key rate processes and to use a Bmultiple lines of
evidence^ approach that employs multiple assessments
of skill. Research is needed to develop skill assessment
metrics that allow for uncertainty in both model predic-
tions and observations, allow for propagation of uncer-
tainty in parameters, and account for the degree of
parameterization.

(5) Development of multi-model ensembles should be in-
creased where possible. Application of multiple models,
with varying spatiotemporal resolution and ecological/
biogeochemical complexity, may provide the best way
forward in both heuristic and management applications
of models. Comparison of models with varying physical
and ecological resolution in the same systemwill provide
important insights for future model development, and
when applied to real-world problems, multiple models
provide an envelope of likely response rather than rely-
ing on single, deterministic predictions.

(6) Researchers should aim to translate state-of-the-art
models into user-accessible, decision-support tools for
managers and other stakeholders as appropriate. One
promising way to do this is through participatory model-
ing approaches that integrate end-user feedback into
model development.

(7) Models should be integrated into educational activities to
increase the public’s fluency in modeling and serve as a
recruiting tool for students into STEM fields. Models are
ideal tools for demonstrating both scientific and mathe-
matical principles, the critical linkage between these two
fields, and the use of mathematics in real practice. Envi-
ronmental models have the additional potential to put
these lessons into a local context that simultaneously
fosters environmental awareness and stewardship.
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