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ABSTRACT

The empirical probability of submarine 
mass failure is quantifi ed from a sequence of 
dated mass-transport deposits. Several dif-
ferent techniques are described to estimate 
the parameters for a suite of candidate prob-
ability models. The techniques, previously 
developed for analyzing paleoseismic data, 
include maximum likelihood and Type II 
(Bayesian) maximum likelihood methods 
derived from renewal process theory and 
Monte Carlo methods. The estimated mean 
return time from these methods, unlike esti-
mates from a simple arithmetic mean of the 
center age dates and standard likelihood 
methods, includes the effects of age-dating 
uncertainty and of open time intervals 
before the fi rst and after the last event. The 
likelihood techniques are evaluated using 
Akaike’s Information Criterion (AIC) and 
Akaike’s Bayesian Information Criterion 
(ABIC) to select the optimal model. The 
techniques are applied to mass transport 
deposits recorded in two Integrated Ocean 
Drilling Program (IODP) drill sites located 
in the Ursa Basin, northern Gulf of Mex-
ico. Dates of the deposits were constrained 
by regional bio- and magnetostratigraphy 
from a previous study. Results of the analy-
sis indicate that submarine mass failures in 
this location occur primarily according to a 
Poisson process  in which failures are inde-
pendent and return times follow an expo-
nential distribution. However, some of the 
model results suggest that submarine mass 
failures may occur quasi peri odically at one 
of the sites (U1324). The suite of techniques 
described in this study provides quantita-
tive probability estimates of submarine mass 
failure occurrence, for any number of depos-
its and age uncertainty distributions.

INTRODUCTION

Submarine mass failures present a signifi cant 
hazard for submarine infrastructure, for offshore 
energy development, and to coastal regions via 
the generation of tsunamis (Locat and Lee, 
2002; Masson et al., 2006; Sawyer et al., 2009; 
ten Brink et al., 2009b; Jackson, 2012). One 
of the critical components of assessing natural 
hazards is determining the probability of occur-
rence. Empirically estimating the probability of 
submarine mass failures is particularly diffi cult, 
owing to the paucity of age dates for individual 
events. Typical problems in dating submarine 
mass failures and their deposits include lack of 
overlying strata, the inability to core underly-
ing strata, and lack of datable material. William 
R. Normark, to whom the “Exploring the Deep 
Sea and Beyond” themed issue is dedicated, 
was heavily involved in several studies dating 
submarine mass failures (Lipman et al., 1988; 
Normark, 1990; Laursen and Normark, 2002; 
Lee et al., 2004; Fisher et al., 2005; Normark 
and Gutmacher, 1988). In particular, for the 
Palos Verdes debris avalanche in southern Cali-
fornia, Normark et al. (2004) presented an ideal 
case where radiocarbon ages from piston cores 
of distal strata above and below an acoustically 
transparent layer continuous with the debris 
avalanche were used to constrain the age of the 
failure. This and similar studies (e.g., Hafl ida-
son et al., 2005) provide the necessary data with 
which to determine the probability of submarine 
mass failures.

For an empirical determination of failure 
probability, there are very few places in the 
world where repeated submarine mass failures 
have been individually dated. Cores from two 
Integrated Ocean Drilling Program (IODP) sites 
in the Ursa Basin, northern Gulf of Mexico 
(Fig. 1), penetrated a sequence of mass transport 
deposits (MTDs) (Expedition 308 Scientists, 
2006a, 2006b). These deposits are interpreted 
to have been emplaced during episodes of retro-

gressive submarine mass failures upslope from 
the drill sites (Sawyer et al., 2009). As many 
as 14 MTDs have been identifi ed in both drill 
holes and have been assigned ages based on 
microfossils and magnetostratigraphy (Urgeles 
et al., 2007).

The objective of this study is to develop a 
methodology to estimate the probability of sub-
marine mass failures from a sequence of dated 
MTDs, such as found in the Ursa Basin. A previ-
ous study (Geist and Parsons, 2010) focused on 
the more common situation in which a sequence 
of MTDs are identifi ed in seismic refl ection 
records, but only a basal horizon beneath the old-
est event is dated (e.g., Fisher et al., 2005). This 
previous method assumes that submarine mass 
failures occur as a stationary Poisson process . A 
gamma distribution is used as a conjugate prior 
to the Poisson distribution in a Bayesian frame-
work, in order to estimate the Poisson intensity 
or rate parameter and its uncertainty. In contrast, 
it is not assumed from the outset of this study 
that submarine mass failures occur according to 
a Poisson process; several other time-dependent 
probability models that include clustering and 
quasiperiodic behavior are also examined. Other 
Bayesian techniques that have been adapted 
for small data sets have been proposed by, for 
example, Nomura et al. (2011).

Paleoseismic records represent an analo-
gous situation where a sequence of earthquake 
events has been dated. While similar in many 
respects, the stratigraphic record of paleoseis-
mic and mass transport deposits differ in terms 
of the scale of their stratigraphic footprint and 
the effects of erosion and deposition processes 
on the retention of the event record. Individual 
paleoseismic events are generally marked by the 
presence of distinct colluvial wedges, angular 
unconformities, fi ssures, sand blows, upward ter-
mination of fault displacements, and abrupt lat-
eral changes in bed thickness (McCalpin, 1996). 
Often, these stratigraphic indicators are present 
within close proximity to one another and over-*egeist@usgs.gov
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lap with similar features from previous seismic 
events, leading to a tightly constrained, aggraded 
event record. Mass transport deposits, on the 
other hand, are often transported signifi cant dis-
tances from their source regions, and, depending 
on the properties of the sediment, water content, 
and fl ow energy, can undergo signifi cant trans-
formation prior to deposition (e.g., Normark and 
Gutmacher, 1988). During transport, these sedi-
ment fl ows can be extremely erosive, scouring 
underlying MTDs and intervening hemipelagic 
sediment. Limited stratigraphic data, the dif-
fi culty in quantifying the effect of this erosion, 
and identifying the subdued change from MTD 
to post-event sediments can signifi cantly impact 
the fi delity of the MTD age record. Although the 
absolute uncertainty of MTD age dates is often 
greater than that of paleoseismic horizons, the 
uncertainty relative to the mean return time may 
be less for MTDs compared to paleoseismic ages 
along active margins.

Probabilistic methods applied to paleoseis-
mic data have included estimating distribution 
parameters from a sequence of event times 
(Utsu, 1984; Nishenko and Buland, 1987) and 
more recent methods that take into account the 
uncertainty of age dating and open time inter-
vals before the oldest event and after the last 
event up to the present (Rhoades et al., 1994; 
Ogata, 1999b; Parsons, 2008). We adapt several 
methods from the latter studies to estimate the 
probability of submarine mass failures. The size 
of the failure is not explicitly considered and it 
is assumed that the probability estimates apply 
to all sizes as expressed by the observed MTDs.

In many studies, the arithmetic (sample) 
mean using the center age of dated events is 
commonly cited as the mean return time for a 
natural hazard. This statistic does not take into 
account the open time intervals and the uncer-
tainty in age dating. Moreover, uncertainty is 
commonly reported in terms of the standard 
deviation of the center ages, which is not appro-
priate for events that do not occur according to 
a Gaussian distribution (Parsons, 2008). Using 
the methods described in this paper, confi dence 
intervals can be established for each of the 
parameters in the probability models to better 
characterize uncertainty in the hazard estimate.

For natural hazards where there has been a 
lack of probability models developed, such as 
for submarine mass failures, the least astonish-
ing and simplest hypothesis is to assume that 
events occur as a Poisson process. For a Poisson 
process, the time between individual events (i.e., 
inter-event or return time) is independent of the 
past history of events and the return times are 
distributed according to an exponential distribu-
tion parameterized by a rate or intensity param-
eter. Moreover, a Poisson process is in general 

the one with the maximum entropy and an ideal 
reference model against which the informa-
tion content in other probability models can 
be gauged (Kagan and Knopoff, 1987). Other 
models that are developed for natural hazards 
are most often evaluated against the exponential 
model using various statistical tests and mea-
sures of goodness of fi t.

One non-Poissonian probability model that 
has been developed for subaerial mass failures 
is the Weibull model. The Weibull model is one 
of several models that includes an additional 
parameter quantifying whether a sequence of 
events is clustered or quasiperiodic in time. 
Other probability models that are commonly 
invoked are the lognormal and gamma models. 
In Griffi ths’s (1993) study, the author used the 
Weibull model and parameter estimation using 
a method of moments to indicate that large 
rock avalanches are quasiperiodic. In contrast, 
Witt et al. (2010) provided detailed evidence 
for the clustering of small subaerial mass fail-
ures from historical records. One other model 
that has been recently employed for earthquakes 
is the Brownian Passage Time model (BPT) 
(Matthews  et al., 2002), which has the charac-
teristic of an asymptotically constant hazard 
function, as opposed to the lognormal (asymp-
totically decreasing hazard) and the Weibull 
model (asymptotically increasing hazard).

One may intuitively expect that submarine 
mass failures do not occur independently, owing 
to the fact that one event may destabilize the 
slope surrounding the failure, making another 
failure more likely to occur (e.g., Pratson and 
Coakley, 1996; Sawyer et al., 2009). This sug-
gests, on the one hand, that submarine mass 
failures cluster in time. On the other hand, the 
long-term occurrence of large submarine land-
slides is likely dependent on sediment supply, 
particularly in seismically active regions, where 
the occurrence is dependent on the buildup 
of suffi cient sediment. This line of reasoning 
would suggest that submarine mass failures 
are quasiperiodic in time (Griffi ths, 1993). The 
relationship between variable sedimentation 
rate, pore pressures, and slope failures, how-
ever, is complex (Stigall and Dugan, 2010; You 
et al., 2012).

We test the aforementioned probability mod-
els against the data presented in the Ursa Basin 
IODP holes. Assignment of the range of dates 
associated with each failure is described in the 
Age Dates of Mass Transport Deposits section. 
Expressions for the probability models under 
consideration are described in the Probability 
Models section. In the Maximum Likelihood 
Methods and the Monte Carlo Method sections, 
we describe two general types of statistical 
inference methods that estimate the parameters 

of the probability models. In the Model Selec-
tion section, we compare each of the probability 
models, and we estimate the hazard function 
for each model in the Hazard Estimation sec-
tion. Overall, this study provides a framework 
of inferring probability models for other areas 
in which a sequence of MTDs has been dated.

AGE DATES OF MASS TRANSPORT 
DEPOSITS (MTDS)

The approximate ages of nine MTDs from 
site U1322 (Table 1) and fi ve MTDs from site 
U1324 (Table 2) are used to test the probability 
models. While the morphology of MTDs can 
change rapidly over very small distances lead-
ing to incomplete records in recovered strati-
graphic sections, the MTD stratigraphic record 
at both sites is assumed complete for the areas 
local to the holes based on the interpretation of 
seismic refl ection data from the region (Winker 
and Shipp, 2002; Expedition 308 Scientists, 
2006b; Sawyer et al., 2007). Age ranges for 
each MTD were estimated from the age model 
of Urgeles et al. (2007), which was established 
from microfossil zonations and magnetostrati-
graphic datums tied to global δ18O records 
(Expedition 308 Scientists, 2006b). Events 1b 
and 1d in both sites occur in lithostratigraphic 
unit 1 (subunits 1b and 1d), while events 2a–2g 
in U1322 (Table 1) are thought to be time correl-
ative with subunits IE through IIB at site U1324 
(Expedition 308 Scientists, 2006a).

The MTD sequences at both sites overlie 
and erode into the regionally identifi able Blue 
Unit, a thick layer of interbedded sand and 
mud, likely emplaced by turbidity currents 

TABLE 1. AGE ESTIMATES FOR MASS 
TRANSPORT DEPOSITS AT IODP HOLE U1322

Event no.
Age range 

(ka)
Center age 

(ka)
1b 16.5–18.5 17.5
1d 21–23.5 22.25
2a 31.5–34.5 33
2b 35.5–37 36.25
2c 51–55 53
2d 56–58.5 57.25
2e 59–60 59.5
2f 61–63 62
2g 63.5–64.5 64

Note: IODP—Integrated Ocean Drilling Program.

TABLE 2. AGE ESTIMATES FOR MASS 
TRANSPORT DEPOSITS AT IODP HOLE U1324

Event no.
Age range 

(ka)
Center age 

(ka)
1b 12.5–14.5 13.5
1d 18–23 20.5
1f 43–45 44
2b 52–55 53.5
2d 63–66.5 64.75

Note: IODP—Integrated Ocean Drilling Program.
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in a basin-fl oor fan setting during the Marine 
Isotope Stage (MIS) 4 sea-level lowstand 
(Sawyer et al., 2009). As the top of the Blue 
Unit has been substantially eroded, for the pur-
poses of this study the base of the Blue Unit 
is assigned an age of 74 ka, the maximum age 
of the MIS 4 interval (Martinson et al., 1987). 
This date is used as the earliest time when no 
submarine mass failures had occurred prior 
to the fi rst MTD (i.e., the “S” date in Ogata, 
1999b and Maximum Likelihoods Section). 
Given the lack of absolute age information 
and therefore low fi delity/resolution of the age 
model, we apply no formal error estimates to 
the upper and lower bounds of MTD ages in 
Tables 1 and 2.

PROBABILITY MODELS

Models of submarine mass failure occur-
rence assume that the return times are distrib-
uted according to a particular probability distri-
bution. Consider a point process consisting of 
a sequence of n events, in this case submarine 
mass failures, that are ordered in time: t1 < 
t2 <…< ti<…< tn. The time between events is 
termed the inter-event or return time τ and is 
given by τi = ti+1 – ti. The process that gives rise 
to these events is considered a renewal process if 
the return times are independent and identically 
distributed according to a particular probability 
distribution (Daley and Vere-Jones, 2003). A 
renewal process is considered “memoryless” in 
that the probability of a future event does not 
depend on the past history of events, only the 
elapse time since the last event. Moreover, a 
stationary Poisson process is one in which the 
probability of a future event is constant for a 
given time interval and depends on neither the 
past history of events nor the elapsed time since 
the last event. For a Poisson process, the num-
ber of events in a fi nite interval follow a Poisson 
distribution and the probability density function 
(pdf) of return times follows an exponential dis-
tribution:

 f e( )τ = λ −λτ, (1)

where λ is the rate or intensity parameter. The 
mean return time for this distribution is given by 
1/λ. A stationary or temporally homogeneous 
Poisson process is one in which λ is constant 
with time. All probability models considered in 
this study are assumed to be stationary.

Several other renewal-process probability 
distributions that account for increased cluster-
ing or quasiperiodic behavior can be compared 
with the exponential distribution. The pdf of 
return times described by a gamma distribution 
is given by

 f e1( ) ( )τ = β τ Γ α−α α−
− τ
β , (2)

where Γ is the gamma function, β is a scale 
parameter, and α is a shape parameter, such that 
α < 1 is associated with a cluster process and 
α > 1 is associated with a quasiperiodic process 
(α = 1 recovers the exponential distribution). 
The mean return time for the gamma distribu-
tion is given by αβ.

The pdf for the Weibull distribution, used 
by Griffi ths (1993) and Witt et al. (2010) as a 
model for subaerial landslides, is given by

 f e
1

( )τ = α
β

τ
β
⎛

⎝
⎜

⎞

⎠
⎟

( )
α−

− τ β α

, (3)

where β is a scale parameter and α is a shape 
parameter (α < 1 and α > 1 represent cluster and 
quasiperiodic processes, respectively, as with 
the gamma distribution). The mean for this dis-
tribution is given by βΓ(1 + 1/α).

The pdf for the lognormal distribution that 
commonly characterizes quasiperiodic processes 
is given by

 ( )ƒ τ =
πστ

( )−
τ−μ
σe

1

2

ln

2

2

2 , (4)

where μ is a location parameter and σ is a shape 
parameter. The mean return time for the log-
normal distribution is given by exp(μ + σ2/2).

Finally, the BPT distribution, developed by 
Matthews et al. (2002) for earthquake sequences, 
has a pdf given by

 ( )ƒ τ = μ
πα τ

⎛
⎝⎜

⎞
⎠⎟

( )τ−
−

μ
μα τe

2 2 3

1 2
2

2

2

, (5)

where μ is a location parameter and α is the 
coeffi cient of variation or aperiodicity param-
eter. The mean is simply given by μ. This dis-
tribution is equivalent to the inverse Gaussian 
distribution or Wald distribution given by

 ( )ƒ τ = λ
πτ

⎛
⎝⎜

⎞
⎠⎟

( )−
λ τ−μ

μ τe
2 3

1 2
2

2

2

, (6)

where α = μ λ/ . The BPT distribution is 
nearly indistinguishable from the lognormal 
distribution described above. Both the lognor-
mal and BPT models have the property of zero 
probability of repeated failure immediately 
following an event. In addition, at long times 
since the last event relative to the mean return 
time, the hazard rate for the BPT distribution 
is quasi-stationary, as is the hazard rate for the 
gamma distribution.

Aside from the density distribution of return 
times, the parameter estimation methods below 

are based on functions that can be derived from 
the pdf. These functions include the survivor 
function φ(τ) = 1 – F(τ), where F(τ) is the cumu-
lative distribution function, and the hazard-rate 
function υ(τ) given below:

 ( ) ( )
( )υ τ =

ƒ τ
− τ1 F

. (7)

Note that according to this defi nition and 
Equation 1, υ(τ) for a Poisson process simply 
equals the intensity parameter λ and is time 
independent. The hazard functions associated 
with the other probability models are all time 
dependent. A key aspect in the development of 
likelihood functions for a point process in gen-
eral is the idea of conditional intensity of the 
form λ(t|t1 … tn) (t > tn) (Daley and Vere-Jones, 
2003) (see Appendix). For a renewal process , 
the conditional intensity depends only on the 
time since the last event and equals υ(t – tn) 
(Ogata, 1999b; Daley and Vere-Jones, 2003).

MAXIMUM LIKELIHOOD METHODS

The likelihood function represents the prob-
ability that a fi xed set of observations would be 
observed as a function of a given set of param-
eters (θ) for a particular distribution (Aitkin, 
2010). The parameters that maximize the log-
likelihood function (θ̂) are termed the maximum 
likelihood estimate (MLE). Standard error esti-
mates of inferred parameters based on the likeli-
hood function depend on how well the function 
can be approximated by a quadratic function 
(Pawitan, 2001).

MLE Considering Open Intervals 
and Exact Event Times

Standard expressions for the log-likelihood 
function and MLE are known for each of the 
probability models described above, assuming 
that the occurrence times are known exactly and 
the open intervals are ignored. However, these 
expressions may be signifi cantly biased for 
small sample numbers. Daley and Vere-Jones 
(2003) and Ogata (1999a, 1999b) describe 
expressions of the likelihood function, applica-
ble to an arbitrary probability model, from 
point-process theory and the conditional inten-
sity function. Considering the open intervals 
and events ti over S < t1 < t2 <…< tn < T, the 
log-likelihood function for a stationary renewal 
process (Ogata, 1999b; Daley and Vere-Jones, 
2003) is

 

ln L S,T[ ] θ( ) = − lnνθ + lnφθ t1 − S( ) +

lnƒθ ti − ti−1( ) + lnφθ T − tn( ),
i=2

n∑
 (8)
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where νθ is the mean return time over the entire 
distribution (not the arithmetic mean of the sam-
ples) and is given by:

 νθ = φθ t( )dt
0

∞

∫ = tƒθ t( )dt
0

∞

∫ . (9)

See Appendix for a summary of how the 
log-likelihood function shown in Equation 8 is 
derived. The log-likelihood function expressed 
by Equation 8 differs from standard log-likeli-
hood formulas associated with the distributions 
and from those of previous paleoseismic studies 
that do not include the open interval before the 
oldest dated event and the –ln υθ term (Ogata, 
1999b).

Using the probability models described 
above, we determine the MLE of the model 
parameters, assuming an exact occurrence age 
at the center of each interval indicated in Tables 
1 and 2. The log-likelihood function is formu-
lated from Equations 8 and 9. The maximum 
in the function is found by the Nelder-Mead 
direct search method of optimization (Nelder 
and Mead, 1965; Press et al., 2007). Results of 
parameter estimation for each probability model 
are shown in Tables 3 and 4.

Confi dence intervals for the distribution 
parameters can be calculated from the likeli-
hood profi le, holding the other parameter at its 
MLE. The 95% confi dence interval is obtained 
by comparing likelihood ratios to the chi-
squared distribution with one degree of freedom 
(χ2

95%[1]):

 
( ) [ ]( )θ θ⎡⎣ ⎤⎦ = θ
θ

θ
< χ

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

L

L
ˆ , ˆ ;2 ln

ˆ
1L U 95%

2 . (10)

The gamma and Weibull models have shape 
parameters whose domains span clustering 
and quasiperiodic behavior. For site U1322, 
the 95% confi dence interval for α spans across 
the boundary α = 1 that divides clustering and 
quasiperiodic behavior for both models (Fig. 2). 
For site U1324, the lower bound of the 95% 
confi dence interval for α is 3.59 for the gamma 
model and slightly greater than one (1.04) for 
the Weibull model (Fig. 3), suggesting quasi-
periodic behavior. Sample size, however, needs 
to be considered in overall model selection (dis-
cussed in the Model Selection section).

Potential bias in standard log-likelihood 
functions based only on the return times can 
be determined by comparing mean return times 
from parameter estimates shown in Tables 5 
and 6 with those from standard MLE expres-
sions. For example, for the exponential distri-
bution, the MLE using the standard expression 
equals the arithmetic or sample mean from the 
data (5.81 k.y.), whereas the MLE using Ogata’s 

(1999b) derived log-likelihood function that 
considers open intervals is signifi cantly longer 
(8.22 k.y.). In each case, the sample mean and the 
standard MLE underestimate the mean return 
time (Parsons, 2008).

Type II MLE Considering Open Intervals 
and Uncertain Event Times

A Bayesian method was developed by Ogata 
(1999b) to account for uncertain event times, in 
addition to the effect of open intervals. Unlike 
traditional Bayesian inference techniques in 
which the prior and posterior distribution are 
a function of the parameter space (θ), Ogata’s 
(1999b) method was formulated such that the 
prior and posterior distributions are the prob-
ability densities of each event age distribution 
[ψi(ti); i = 1,…, n]. Thus, both the event ages and 
models parameters are uncertain. The prior dis-
tributions for event ages used by Ogata (1999b) 
include Dirac delta functions, and uniform and 
triangular distributions. Bayes’ theorem is then 
written as

  ϕ t1,…, tn θ( ) = L S ,T[ ] θ( ) ψi ti( )i=1
n∏

S ,T[ ] θ( )ℒ
, (11)

where ϕ(t1,…,tn|θ) is the posterior distribution 
and ℒ[S,T](θ) is termed the integrated or marginal 
likelihood (Ogata et al., 2000; Aitkin, 2010). ℒ[S,T](θ) integrates the likelihood function with 
the joint distribution of the priors:

 
ψi ti( )dt1,…, d .tni=1

n∏

S ,T[ ] θ( ) = …
S

T

∫ L S ,T[ ]
S

T

∫ θ;t1,…, tn( )ℒ

 (12)

Ogata (1999b) provided details on the for-
mulation of ℒ[S,T](θ) in a manner similar to the 
development of Equation 8. Using center-age 
Dirac delta functions for the priors recovers 
the likelihood expression given in Equation 8 
exactly.

The model parameters θ̂ that maximize the 
integrated likelihood (Equation 12) is termed, 
for this type of statistical inference, Type II 
maximum likelihood (Good, 1965; Robert, 
2007). The Type II MLEs for the different prob-
ability models are indicated in Tables 7 and 8 
for the two IODP sites. Estimates of the rate 
parameter for exponential distribution using the 
center-age (Tables 3 and 4) and Type II likeli-
hood methods are identical (Ogata, 1999b). 
For the other distributions, there appears to be 
more variation between the two methods in esti-
mates of the shape parameters compared to the 
scale parameters. The mean return times that 
correspond to the Type II MLEs are slightly 
longer for site U1322 and nearly the same for 
site U1324 compared to the center-age MLEs 
(Tables 5 and 6). As indicated by Ogata (1999b), 
the center-age MLEs can be considered Type II 
MLEs in which Dirac functions are used as 
priors . Type II MLEs using different priors, 
such as triangular functions, will likely result in 
estimates intermediate between the center-age 
MLEs and the Type II MLEs using a uniform 
prior as described in this study.

MONTE CARLO METHOD

Monte Carlo methods are an important alter-
native to the likelihood methods, particularly 
where the likelihood functions and their maxi-

TABLE 3. RESULTS OF MLE PARAMETER ESTIMATION, IODP HOLE U1322

Probability model Parameter 1* Parameter 2† AIC AICc
5.859.75—221.0laitnenopxE
4.164.9514.157.5ammaG
7.957.75898.017.1lamrongoL
6.166.9521.175.8llubieW
9.859.6560.135.8TPB

Note: Akaike’s Information Criterion (AIC) and the associated bias correction (AICc) are discussed 
in the Model Selection section. MLE—maximum likelihood estimate; IODP—Integrated Ocean Drilling 
Program; BPT—Brownian Passage Time.

*Intensity, scale, or location parameter.
†Shape or aperiodicity parameter.

TABLE 4. RESULTS OF MLE PARAMETER ESTIMATION, IODP HOLE U1324

Probability model Parameter 1* Parameter 2† AIC AICc
3.049.83—8660.0laitnenopxE
3.243.6353.506.2ammaG
1.241.63734.045.2lamrongoL
8.248.6324.28.51llubieW
0.240.63454.00.41TPB

Note: Akaike’s Information Criterion (AIC) and the associated bias correction (AICc) are discussed 
in the Model Selection section. MLE—maximum likelihood estimate; IODP—Integrated Ocean Drilling 
Program; BPT—Brownian Passage Time.

   *Intensity, scale, or location parameter.
†Shape or aperiodicity parameter.
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mum are diffi cult to compute. The Monte Carlo 
method described in detail by Parsons (2008) 
takes into account age-dating uncertainty and 
the open intervals, as in the Type II likelihood 
methods developed by Ogata (1999b). Two 
probability models representing time depen-
dence and time independence are compared 
using a Monte Carlo method that tallies the 
relative success of different distributions against 
sets of observed intervals. Time independence 
is represented by exponential distributions 
(Poisson process), and Brownian Passage Time 
(inverse Gaussian) distributions are taken to rep-
resent time dependence.

To make the test, a series of distributions that 
covers all reasonable mean recurrence intervals 
is developed (100 yr to 20,000 yr for the Ursa 
Basin MTDs). Time-dependent distributions are 
characterized by two parameters (Equation 5), 
and are thus also constructed across coeffi cient 
of variation (shape parameter) values between 
0.01 and 0.99 for each mean return time. Groups 
of MTD times are randomly drawn 5 mil-
lion times from each possible distribution and 
assembled into sequences. With this method, 
sequence means are identifi ed directly from the 
parameters of parent distributions rather than 
from taking arithmetic means of sequences.

The Monte Carlo calculations use a uniform 
distribution for the event time windows (Tables 
1, 2), and an event that happens at any time 
within the window is considered a match. The 
Monte Carlo sequences begin with an event that 
is given freedom to happen at any time prior to the 
fi rst observed MTD time window. In this regard, 
it is different from Ogata’s (1999a) method in 
which no event is assumed to occur between 
time S and the fi rst deposit. The extra event in 
the Monte Carlo method contributes nothing 
other than a starting point for the sampling. 
This is needed because the fi rst observed time 
window has some range within which the event 
might have happened, whereas Monte Carlo 
simulation must begin at a point in time. A sec-
ond open interval extending from the end of the 
last observed event window to the present is uti-
lized; if a simulated event falls into this interval, 
its sequence is not considered a match.

To summarize the technique, exponential dis-
tributions with mean return times from 100 to 
20,000 yr are generated in 100 yr increments, 
and a group of Brownian Passage Time distribu-
tions is also generated with mean return times 
from 100 to 20,000 yr in 100 yr increments. The 
time-dependent distributions also range through 
coeffi cients of variation between 0.01 and 0.99 
(0.1 increments) for every mean return time. 
Each individual distribution is given 5 million 
chances to reproduce each MTD record within 
the uncertainties (Tables 1, 2). The number of 
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Figure 2. Log-likelihood contours for the (A) gamma and (B) Weibull probability models 
based on the data at site U1322. Bars indicate 95% confi dence interval for each parameter, 
with center being the maximum likelihood estimate. α—shape parameter; β—scale param-
eter for the distributions. See Table 3. Contours represent likelihood values.



Estimation of submarine mass failure probability

 Geosphere, April 2013 293

successful matches is tallied for every possible 
distribution. The most likely distributions to 
represent Ursa Basin submarine mass failure 
occurrence are taken to be the ones that most 
frequently match the records.

Results from Monte Carlo analysis are shown 
in Figure 4, where the number of matches for 
each potential return time distribution is dis-
played. Generally, the record from site U1324 
is easier to match than the U1322 sequence 
because there are fewer total events, and they 
are observed within wider time intervals (Tables 
1, 2). However, the results of comparing a Pois-
son process against time-dependent models are 
the same; in both cases, many more matches 
are attained from exponential distributions than 
from time-dependent distributions (factor of 2:1 
at the U1322 site, and 20:1 at the U1324 site; 
Fig. 4), even when considering the difference 
in number of model parameters (see the Model 
Selection section). Best-fi t mean return times 
are given in Tables 9 and 10.

In summarizing results from Monte Carlo 
modeling, we note that it is possible to fi t the 
MTD sequences found at the two IODP sites 
from the Ursa Basin to time-dependent models, 
particularly for higher (more random) coeffi -
cients of variation (Fig. 4, Tables 9 and 10). 
However, a better overall match can be made 
with random-in-time exponential distributions.

MODEL SELECTION

Comparison of different probability models 
for submarine mass failure occurrence is made 
using Akaike’s Information Criterion (AIC). 
AIC is a relative measure of the information lost 
when a particular model is used as an approxi-
mation to the true model. AIC balances the 
goodness of fi t with the number of parameters 
needed to describe the model (Burnham and 
Anderson, 2010). The preferred model, among 
competing models for the same data and con-
straints, is the one with the lower AIC. The for-
mula for AIC is given by

 L KAIC 2 max ln 2( )= − +θ , (13)

where K = dim{θ} is the number of parameters 
in the model. For small samples, there is a bias 
correction given approximately by (Hurvich and 
Tsai, 1989; Burnham and Anderson, 2010)

 
K K

n K
AICc AIC

2 1

1
( )= +

+
− −

, (14)

where n is the number of samples, in this case 
the number of MTDs.

AIC and AICc are used to evaluate the dif-
ferent models (Tables 3 and 4) from the MLE 
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Figure 3. Log-likelihood contours for the (A) gamma and (B) Weibull probability models 
based on the data at site U1324. Bars indicate 95% confi dence interval for each parameter, 
with center being the maximum likelihood estimate. α—shape parameter; β—scale param-
eter for the distributions. See Table 4. Contours represent likelihood values.
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using center-age event times. Using AIC with-
out the bias correction indicates that some of 
the quasi periodic models perform better than 
the exponential model (BPT model optimal for 
both sites U1322 and U1324). This is consistent 
with α = 1 being outside the 95% confi dence 
interval for the gamma and Weibull models (site 
U1324) discussed in the Maximum Likelihood 
Methods section (Fig. 3). However, using AICc 
with the small-sample bias correction indicates 
that the exponential model associated with a sta-
tionary Poisson process is the optimal model for 
both sites.

For the Type II MLE results based on Ogata’s 
(1999b) Bayesian inference method, Akaike’s 
Bayesian Information Criterion (ABIC) is 
used to evaluate the different models (Tables 7 
and 8) (Akaike, 1980). ABIC is of similar form 
to AIC:

 KABIC 2 max ln 2( )= − +θ ℒ . (15)

However, in this case, ℒ is the integrated likeli-
hood function in the Bayesian method (Equa-
tion 12). The optimal model for submarine mass 
failure occurrence using Type II MLEs is the 
BPT model for both sites. It is unclear whether 
ABIC is biased for small sample sizes.

For the Monte Carlo method, one can view 
the number of successful matches over a fi nite 
number of possibilities as an approximation 
to the likelihood function. In this case, dis-
crete values of the parameter space are used as 
explained in the previous section. In this view, 
the many more successful matches associated 
with the exponential distribution than the BPT 
solution suggests that maximum log-likelihood 

is greater for the exponential distribution, even 
without considering the number of parameters 
in each model.

HAZARD ESTIMATION

The hazard-rate function (Equation 7) is cal-
culated using the center-age MLE for each prob-
ability model and each site (Fig. 5). The dashed 
lines indicate the range in elapsed time from the 
last event to the present, given the uncertainties 
in dating. Formal techniques for incorporat-
ing this uncertainty in the hazard-rate function 
are given by Rhoades et al. (1994) and Ogata 
(1999b). At site U1322, the gamma and Weibull 
models exhibit increasing hazard rate at the 
present time, whereas the lognormal and BPT 
models exhibit decreasing hazard rate (Fig. 5A). 
For all cases, the hazard rate for the exponen-
tial model (Poisson process) is constant. As dis-
cussed in the previous section, the present-day 
hazard rate for the exponential model is optimal 
according to the AICc measure and Monte Carlo 
results, with the associated hazard rate interme-
diate at the present time between the two classes 
of quasiperiodic models.

The difference between the hazard functions 
at the two sites relates to the mean return time 
relative to the time since the last event. At site 
U1324, all of the quasiperiodic models exhibit 
increasing hazard rate at the present time (Fig. 
5B). The time since the last event at site U1322 
is more than twice the mean return time, such 
that the hazard-rate functions are approaching 
their asymptotic values. In contrast, the time 
since the last event at site U1324 is compara-
ble to the mean return time. As such, there is 

a signifi cant difference between the present-day 
hazard rate estimated by the optimal exponen-
tial model and the quasiperiodic models at site 
U1324. If it were found that the quasiperiodic 
models are optimal in terms of estimating the 
occurrence of submarine mass failures at site 
U1324, as suggested by the Type II MLE results 
where the BPT model is optimal, then the 
present-day hazard rate would be considerably 
higher compared to the hazard rate associated 
with the exponential model.

DISCUSSION

Methods

Both the maximum likelihood techniques and 
the Monte Carlo technique for estimating the 
occurrence probability of submarine mass fail-
ures include the effect of the open time intervals 
on parameter estimation. The effect of the open 
intervals alone can be examined by comparing 
the standard MLE with the center-age MLE 
derived by Ogata (1999b). For both drill sites 
and all probability models, inclusion of the open 
intervals increases the estimated mean return 
time for submarine mass failures (Tables 5 and 
6). The Monte Carlo technique and the Type II 
maximum likelihood technique also account for 
uncertainty in age dating events. Uncertainty 
is endemic in estimating event ages from geo-
logic samples, such as the age of mass transport 
deposits sampled by drill holes as discussed in 
the age dates section above. The effect of this 
uncertainty partly depends on how the uncer-
tainty is distributed for each event, incorporated 
in the Type II likelihood method as prior distri-

TABLE 5. COMPARISON OF MEAN RETURN TIMES USING 
DIFFERENT MLE METHODS FOR IODP HOLE U1322

Probability model
Standard MLE

(kyr)
Center-age MLE

(kyr)
Type II MLE

(kyr)
Exponential 5.81 8.22 8.22

31.801.818.5ammaG
Lognormal 5.64 8.31 8.50

51.841.888.5llubieW
26.835.818.5TPB

Note: MLE—maximum likelihood estimate; IODP—Integrated Ocean Drilling 
Program; BPT—Brownian Passage Time.

TABLE 6. COMPARISON OF MEAN RETURN TIMES USING 
DIFFERENT MLE METHODS FOR IODP HOLE U1324

Probability model
Standard MLE

(kyr)
Center-age MLE

(kyr)
Type II MLE

(kyr)
Exponential 12.8 15.0 15.0

9.319.318.21ammaG
Lognormal 12.7 13.9 13.9

0.410.419.21llubieW
9.310.418.21TPB

Note: MLE—maximum likelihood estimate; IODP—Integrated Ocean Drilling 
Program; BPT—Brownian Passage Time.

TABLE 7. RESULTS OF TYPE II MLE PARAMETER ESTIMATION 
(UNIFORM PRIOR) FOR IODP HOLE U1322

Probability model Parameter 1* Parameter 2† ABIC
Exponential 0.122 — 57.9

6.9523.161.6ammaG
Lognormal 1.69 0.95 58.2

8.9521.105.8llubieW
5.7541.126.8TPB

Note: MLE—maximum likelihood estimate; IODP—Integrated Ocean Drilling 
Program; BPT—Brownian Passage Time; ABIC—Akaike’s Bayesian Information 
Criterion.

*Intensity, scale, or location parameter.
†Shape or aperiodicity parameter.

TABLE 8. RESULTS OF TYPE II MLE PARAMETER ESTIMATION 
(UNIFORM PRIOR) FOR IODP HOLE U1324

Probability model Parameter 1* Parameter 2† ABIC
Exponential 0.0668 — 38.9

2.6353.681.2ammaG
Lognormal 2.55 0.40 36.0

6.6306.28.51llubieW
9.53904.09.31TPB

Note: MLE—maximum likelihood estimate; IODP—Integrated Ocean Drilling 
Program; BPT—Brownian Passage Time; ABIC—Akaike’s Bayesian Information 
Criterion.

*Intensity, scale, or location parameter.
†Shape or aperiodicity parameter.
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butions in a Bayesian framework. End members 
examined in this study are uniform prior and the 
Dirac prior, the latter of which reduces to the 
center-age MLE. Age uncertainty using a uni-
form prior tends to slightly increase the mean 
return time for site U1322 compared to center-
age MLEs, though there is little effect for site 
U1324. For each method and probability model, 
it is possible to defi ne parameter confi dence 
intervals as shown in Figures 2 and 3.

Differences between the Type II likelihood 
and Monte Carlo methods can be examined by 
comparing the results from the BPT model. For 
the Type II likelihood method, the mean return 
time is 8.62 and 13.9 k.y. for sites U1322 and 
U1324, respectively (Tables 5 and 6). In com-
parison, the mean return time estimated by the 
Monte Carlo method is 4.03–4.37 and 8.25 k.y. 
for sites U1322 and U1324, respectively (Tables 
9 and 10). In addition, the Type II likelihood 
technique appears to be estimating a signifi cantly 
lower value for the shape parameter (coeffi  cient 
of variation, α) at site U1324, than the Monte 
Carlo technique (Tables 8 and 10). The differ-
ence in the results from the two methods may 
relate to how the open intervals are handled. In 
the case of the likelihood methods, no event is 
assumed to occur between age S (base of the 
Blue Unit, estimated to be 74 ka) and the fi rst 
deposit, whereas in the case of the Monte Carlo 
method an event can occur at any time prior to 
the fi rst deposit. Because of the small number of 
events, particularly at site U1324, the latter may 
result in more Poisson-like behavior and shorter 
estimates for the mean return time than the likeli-
hood methods for this case study.

The computational requirement of each tech-
nique depends on the number of events and 
event-age uncertainty relative to the mean return 
time and the probability model used. For the 
Monte Carlo results shown in Figure 4, twenty 
times the number of runs needed to be made for 
site U1322 than for site U1324 (100 million runs 
versus 5 million runs for each pair of distribu-
tion parameters). In contrast, the computational 
requirement for the Type II likelihood method 
depends on the number of events, in terms of 
the number of integrations required to defi ne the 
likelihood function (Equation 12) and the ana-
lytical form of the probability model.

Results

Using these methods, we can assess whether 
submarine mass failures recorded at the two 
IODP sites occur randomly (i.e., according to 
a Poisson process, exhibiting an exponential 
distribution of inter-event times) or whether we 
can say with confi dence that there is a clustering 
or quasiperiodic aspect to these events. For the 
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center-age MLE, the exponential distribution of 
return times associated with a Poisson process is 
the optimal model for both sites according to the 
AICc model selection criterion. Because of the 
small number of samples, the correction factor 
to AIC is particularly large, in favor of the expo-
nential model. If more events were identifi ed, it 
is possible that the BPT model would have been 
selected, as indicated by the raw AIC values in 
Tables 3 and 4. The ABIC model selection crite-
rion for the Type II MLE method indicates that 
the BPT model is optimal for both sites, how-
ever no small-sample bias correction is applied 
to ABIC as it is for AICc. The Monte Carlo 
method that considers both age-dating uncer-
tainty and open intervals indicates that the expo-
nential model is optimal. As indicated above, 
the difference between the likelihood and Monte 
Carlo results likely relates to how the open inter-
val before the fi rst event is treated. The differ-
ence in the resulting hazard function between 
the exponential model and quasiperiodic models 
can be signifi cant, as shown in Figure 5.

The difference in the overall rates and mean 
return times between the two sites relates to the 
simple fact that fewer MTDs were present at site 
U1324 (Urgeles et al., 2007). There may also 
be differences in the physical processes relat-
ing to the long-term occurrence of submarine 
mass failures. The two sites are in slightly dif-
ferent geographic positions relative to the ances-

tral canyons and their levee deposits (Sawyer 
et al., 2009; Stigall and Dugan, 2010). Hence, 
the record of MTDs at each site may be a func-
tion of the basin architecture. In addition, physi-
cal properties such as pore pressure between 
the two sites are slightly different, indicative 
of regional variation of sediment accumulation 
and fl uid fl ow focusing (Flemings et al., 2008; 
Stigall and Dugan, 2010).

Differences between the occurrence results 
of subaerial landslides that show clustering 
behavior (Witt et al., 2010) and the results of this 
study that primarily show Poisson/quasiperiodic 
behavior may relate to differences in the detec-
tion level between the two studies. Although it 
is diffi cult to assess the range of landslide sizes 
among the studies, it is certain that subaerial 
landslides examined by Witt et al. (2010) (with 
time scales measured in days) are smaller in size 
than the submarine mass failures considered here 
and in Griffi ths (1993) (with time scales mea-
sured in thousands of years). Smaller landslides 
are likely conditional to a larger predecessor 
landslide (e.g., secondary failures along a scarp 
from a predecessor landslide) and therefore tend 
to cluster temporally. The MTDs record larger 
events, possibly from independent sources. 
There does not appear to be a strong time-depen-
dent failure process underlying the timing of the 
MTDs in this setting. Although some events may 
be part of a larger retrogressive system (Sawyer 

et al., 2009), this does not necessarily imply that 
events are conditional on preceding events, in 
terms of temporal occurrence. It should be noted, 
however, that there may be fundamental differ-
ences in the occurrence of subaerial landslides 
compared to submarine mass failures, analogous 
to the differences in size distributions in the two 
environments (ten Brink et al., 2009a).

Finally, it is assumed throughout this study 
that the probability models are stationary. The 
driving force for basin formation is salt with-
drawal, which is likely stationary relative to the 
geologic record of the MTDs. However, sedi-
ment input and accumulation may be dependent 
on periods of glaciation and changes in sea level 
(Kolla and Perlmutter, 1993; Lee, 2009; Piper 
and Normark, 2009; Korup et al., 2012) and thus 
may not be stationary. Testing of the stationary 
assumption is likely only possible for global 
data sets until more age dates of mass transport 
deposits are acquired.

CONCLUSIONS

Techniques have been developed to empiri-
cally determine the probability distribution 
of submarine mass failures from dated mass 
transport deposits. Adapted from paleoseismic 
methods, these techniques include the uncer-
tainty in age dating the deposits and the open 
time intervals before the fi rst and after the last 

TABLE 9. PROBABILITY OF PARAMETER COMBINATIONS DEFINING RETURN TIME DISTRIBUTIONS FROM MONTE CARLO MODELING OF IODP HOLE U1322

Exponential model
IC%76IC%59naeMnaideMedoM

1100 3900 4007 1000 9400 1300 6300
BPT model

IC%76IC%59naeMnaideMedoMahplA.borP
0.21 0.99 3700 4100 4029.6 1200 6100 3200 5200
0.21 0.9 3700 4200 4229.2 1400 5800 3800 4700
0.21 0.8 3700 4300 4368.1 3100 5800 4000 4700
0.16 0.7 5300 4600 4602.1 3500 5900 4200 4900
0.16 0.6 5300 4900 4872 3800 5900 4500 5200
0.05 0.5 6000 4700 4968 4400 5700 4600 5000

Note: The most likely mode, median, and mean of the distributions are given for a range of coeffi cient of variation values. In addition, 95% and 67% confi dence bounds on 
mean return times are given. Values are also given from exponential distributions (exponential model). IODP—Integrated Ocean Drilling Program; BPT—Brownian Passage 
Time; CI—confi dence interval; Prob.—Probability.

TABLE 10. PROBABILITY OF PARAMETER COMBINATIONS DEFINING RETURN TIME DISTRIBUTIONS FROM MONTE CARLO MODELING OF IODP HOLE U1324

Exponential model
IC%76IC%59naeMnaideMedoM

6700 10200 11662 4500 28000 6600 16300
BPT model

IC%76IC%59naeMnaideMedoMahplA.borP
0.17 0.99 6900 8200 8675 4300 14800 5600 12000
0.19 0.9 5800 7900 8246 4500 12900 6700 9200
0.17 0.8 5000 7700 7940 4700 12000 6500 8900
0.15 0.7 5600 7300 7664 5100 11200 6500 8300
0.17 0.6 6900 7600 7722 5600 10500 6800 8400
0.10 0.5 7300 7900 8265 6200 11500 7300 8700
0.04 0.4 8400 8800 9262 7300 12500 8500 9400
0.02 0.3 11900 10900 11086 7300 11800 10200 11000

Note: See Table 9 footnote for explanation.
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deposit. The renewal-process likelihood tech-
niques include those for center-age occurrence, 
accounting for open intervals, and Type II likeli-
hood methods under a Bayesian framework to 
also accommodate uncertainty in the age dates. 
Results from the likelihood methods can be used 
with model selection criteria, such as AIC, and 
statistical tests relative to a Poisson null hypoth-
esis, such as the likelihood ratio test. The Monte 
Carlo technique draws many samples for a spe-
cifi c distribution parameter(s) and repeats these 
draws for all possible relevant parameter values. 
The most likely parameters for a given distribu-
tion are the ones with the most matches to the 
data. The Monte Carlo technique is particularly 
useful when the likelihood functions or their 
maximum cannot be computed.

Results from mass transport deposits recorded 
in IODP sites U1322 and U1324 within the Ursa 
Basin indicate that the deposits can be described 

by a Poisson process, based on the center-age 
maximum likelihood and Monte Carlo meth-
ods, or a quasiperiodic process, based on the 
Type II maximum likelihood method. For the 
Poisson process, the return times are exponen-
tially distributed and the hazard-rate function is 
a constant. The mean return time of submarine 
mass failures is shorter at site U1322 primarily 
because more mass transport events are identi-
fi ed over a similar period of time. Differences 
in estimates of the mean return time between 
the likelihood and Monte Carlo methods are 
related to how the open interval before the fi rst 
event is treated. For the likelihood methods, 
no event is assumed to occur between a speci-
fi ed age S and the fi rst event, whereas for the 
Monte Carlo method any event can occur before 
the fi rst event. Application of likelihood and 
Monte Carlo techniques to the Ursa Basin data 
demonstrates how these methods can estimate 

parameters and confi dence intervals for various 
probability models and test different hypotheses 
for the occurrence of submarine mass failures.

APPENDIX

The development of the likelihood function (Equa-
tion 8) is summarized here from Daley and Vere-Jones 
(2003) and Ogata (1978, 1999b). Consider a history of 
event times Ht before time t0: 0 = t0 < t1 …< tn < t in 
which no event can occur at the same time. For a point 
process such as this, the conditional probability that an 
event will occur in a small interval of time δ is given by:

 P N t H t Ht t( )( )⎡⎣ ⎤⎦ = λ δ, (A1)

where N(t) is a counting measure and λ(t|Ht) the con-
ditional intensity function. In the limit as δ → 0, the 
conditional intensity can be thought of as the instanta-
neous rate of occurrence. For a fi nite point process on 
the interval (0, T), the likelihood function in terms of 
the conditional intensity is given by (Daley and Vere-
Jones, 2003)

 L t H t H dtexpt t

T

0∫( ) ( )= λ − λ⎡
⎣⎢

⎤
⎦⎥i

n
1∏ = . (A2)

A renewal process is one in which the events are 
independent and identically distributed. In this case, 
the conditional intensity function depends only on 
the time since the last event. The conditional intensity 
function parameterized by vector θ is given by

 λθ t Ht( ) = h t − tn( ) = f t − tn( )
1− F t − tn( ), (A3)

where h(x) is the hazard function, f(x) is the prob-
ability density function, and F(x) is the cumulative 
distribution. For a fi nite renewal process, Daley and 
Vere-Jones (2003) showed that the likelihood function 
is given by

 L f t f t t F t t1i i n1 1( ) ( ) ( )= −⎡
⎣

⎤
⎦ − −⎡⎣ ⎤⎦θ θ +

1
i
n

1∏ =
−

θ . (A4)

Finally, consider a delayed renewal process in 
which the history of events does not necessarily begin 
with t0 = 0 (Ht: 0 ≤ t1 < t2 …< tn < t). The fi rst event 
is independent from, but not necessarily identically 
distributed with, the other events. If we designate the 
density and cumulative distribution functions associ-
ated with the fi rst event by g(t) and G(t), respectively, 
the conditional intensity λ = g(t)/[1 – G(t)] if N(t) = 0, 
and Equation A3 otherwise. The likelihood function in 
Equation A4 is modifi ed such that

 L g t f t t F t t1i i n1 1( ) ( ) ( )= −⎡
⎣

⎤
⎦ − −⎡⎣ ⎤⎦θ +i

n
1
1∏ =

−
θ . (A5)

The case where g(t1) = fθ(t1) results in the ordinary 
renewal process above. If the delayed renewal process 
is stationary, then g(t) = υθ

–1[1 – Fθ(t)] (Daley and Vere-
Jones, 2003), where νθ = ∫0

∞tfθ(t)dt is the mean of the 
distribution f. The corresponding likelihood function is

L = 1 1 F t1( ) f ti+1 ti( ) 1 F t tn( )υ − −−−θ
−

i=1
n 1−∏⎡⎣ ⎤⎦⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦. (A6)

For a delayed renewal process on the interval (S,T),

 
L = 1 1 F t1 S( )υ −−θ

− ⎡⎣ ⎤⎦

f ti+1 ti( ) 1 .F T tn( )− −−i=1
n 1∏ −⎡⎣ ⎤⎦⎡⎣ ⎤⎦

 (A7)

The log-likelihood function is then that given by 
Equation 8.
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