Woods Hole Coastal and Marine Science Center


USGS Development Version of ROMS

Solution to Test Case 2: Estuary

Jump to project page.Go to test cases page.
Skip Navigation

Accessibility FOIA Privacy Policies and Notices

Take Pride in America logo USAGov logo U.S. Department of the Interior | U.S. Geological Survey

URL: woodshole.er.usgs.gov/project-pages/sediment-transport/John_test2.htm
Page Contact Information: WHSC Webmaster
This page last modified on Monday, 24-Nov-2014 13:10:13 EST

Model:

ROMS v2.0
http://marine.rutgers.edu/po/index.html

Date:

September 3, 2002

Modeller:

John C. Warner (jcwarner@usgs.gov), USGS Woods Hole Field Center
Figure 1. Graph displaying initial salinity distribution for estuary simulations

Figure 1. Initial salinity distribution for estuary simulations

Model was initialized with a constant longitudinal salinity field as shown in Figure 1. Simulations were the calculated for 20 tidal cycles (10 days), after which time a quasi-steady state had been reached. Figure 2 shows the resulting salinity fields for 4 different closure methods near the end of 20 tidal cycles. The 4 different closures are: MY25, Generic Length Scale (GLS) as KKL, GLS as KE, and GLS as KW88. The MY25 closure is computed based on the classical scheme of Mellor/Yamada (1982), and the GLS closures are computed with the method of Umlauf and Burchard (2002 submitted). The main difference is in the length scale limitations. For the MY25 method, the length scale is only limited in the calculation of the stability functions, whereas for the GLS method the length scale is limited in the production, wall proximity function, and the stability functions.

The MY25 closure does not develop a well defined surface mixed layer as with the closures computed with the GLS method. This is most likely due to the length scale limitation and the buoyancy parameter (E3 = 1.8). As discussed by Burchard (2001), a value of c3 ~ 2.5 (E3 ~ 5.0) provides a more realistic simulation of a wind induced surface mixed layer test experiment.

Figure 2. 4 graphs displaying salinity near end of ebb, day 9.9375 (GLS as KW88)(GLS as KE)(GLS as KKL)(MY25)

Figure 2. Salinity distribution after 9.9 days for the estuary simulations.

Suspended sediment results (figure 3) are very dependent on the bottom stresses and vertical mixing processes. For these simulations, a thin layer of sediment was placed on the bed at time = 10 days. Sediment parameters were selected to allow rapid erosion. Upstream riverine flow will transport the sediment downstream and the estuarine circulation creates a turbidity maximum at the limit of salt intrusion. For the MY25 closure, this limit is near x = 35 km, while for the KE and KW simulations, a near bottom turbidity maximum is located near x = 50 km. For the KKL simulation, the turbidity maximum is further upstream, near x = 60 km.

Figure 3. 4 graphs suspended sediment concentration near end of ebb, day 19.9375 (GLS as KW88)(GLS as KE)(GLS as KKL)(MY25)

Figure 3. Suspended sediment concentration distribution after 9.9 days for the estuary simulations.



Jump to top of page Jump to project page.